Prediction of the spectrum of biological activity of triterpene saponins using in silico methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Relevance. The main strategic task of the domestic pharmaceutical industry is to provide the population of our country with affordable, high-quality, safe and effective medicines. At the same time, of particular interest for modern pharmacy is the creation of herbal medicines with a multifunctional effect and a high degree of safety. Plants of the Fabaceae family, the practical value of which is due to the rich chemical composition of biologically active substances, can be promising sources for obtaining phytopreparations. The triterpene saponins of plants of the Fabaceae family, which have a wide spectrum of pharmacological action, deserve special attention.

The aim of the work was to study and predict the biological activity of triterpene saponins contained in plants of the Fabaceae family using in silico methods.

Material and methods. The objects of study were the structural formulas of triterpene saponins from plants of the Fabaceae family. Prediction of the biological activity of triterpene saponins was carried out using in silico methods posted on the domestic web resource Way2Drug.

Results. As a result of in silico studies, triterpene saponins demonstrated a high probability of hepatoprotective, proto-tumor, and anti-inflammatory effects. Along with this, at the level of the average value and below for the studied saponins, antibacterial effects were revealed.

Conclusions. The data obtained on the basis of computer screening confirm, clarify and expand the available scientific information on the pharmacological effects of triterpene saponins from plants of the Fabaceae family. The prospects of carrying out further studies in vitro and in vivo with the aim of clarifying and/or confirming the types of activity of biologically active substances from the group of saponins identified in silico and the subsequent development of drugs based on them have been demonstrated.

Full Text

Restricted Access

About the authors

N. A. Davitavyan

Kuban State Medical University

Author for correspondence.
Email: farmdep@mail.ru

Ph.D. (Pharm.), Associate Professor, Department of Pharmacy

Russian Federation, Krasnodar

E. B. Nikiforova

Kuban State Medical University

Email: farmdep@mail.ru

Ph.D. (Pharm.), Associate Professor, Acting Head of the Department of Pharmacy

Russian Federation, Krasnodar

B. K. Shkhalakhova

Kuban State Medical University

Email: farmdep@mail.ru

Student, Faculty of Pharmacy

Russian Federation, Krasnodar

D. A. Ismagilova

Kuban State Medical University

Email: farmdep@mail.ru

Assistant, Department of Pharmacy

Russian Federation, Krasnodar

References

  1. Rossiĭskaja Federacija. Prikazy. «Ob utverzhdenii gosudarstvennoĭ programmy Rossiĭskoĭ Federacii «Razvitie farmacevticheskoĭ i medicinskoĭ promyshlennosti»: postanovlenie pravitel'stva RF ot 29.12.2021 № 2544. Spravochno-pravovaja sistema «Konsul'tant Pljus». Rezhim dostupa: http://www.consultant.ru. Tekst: jelektronnyĭ.
  2. Belik V.A. Medicinskoe primenenie lekarstvennogo rastitel'nogo syr'ja, soderzhashhego polisaharidy i saponiny. Fiziko-himicheskaja biologija: Materialy VIII mezhdunarodnoj nauchnoj internet-konferencii. 2020; 65–67.
  3. Kurkin V.A., Avdeeva E.V., Pravdivceva O.E. i dr. Nauchnoe obosnovanie ispol'zovanija lekarstvennyh rastenij v otorinolaringologii. Nauka i innovacii v medicine. 2021; 6(2): 54–59.
  4. Fattahova G.A. Saponiny kak biologicheski aktivnye veshhestva rastitel'nogo proishozhdenija. Vestnik Kazanskogo tehnologicheskogo universiteta. 2014; 17(3): 196–201.
  5. Cahueva F.P., Agabalaev I.A. Semejstvo bobovye: vidovoj sostav i ih harakteristika. Fundamental'naja nauka i tehnologii – perspektivnye razrabotki: Proceedings of the Conference, North Charleston, USA. 2016; 10–12.
  6. Lavrov O.M., Lavrova T.N. Ispol'zovanie pazhitnika sennogo i donnika golubogo v kachestve ingredientov dlja proizvodstva funkcional'nyh produktov pitanija. Sovremennaja nauka i innovacii. 2013; 2(2): 78–85.
  7. Singh R.J., Chung G.H., Nelson R.L. Landmark research in legumes. Genome. 2007; 50(6): 525–537.
  8. Ajljarova M.K., Rehviashvili Je.I., Kabulova M.Ju. i dr. Biotehnologicheskie aspekty poluchenija krasitelja estestvennogo proishozhdenija. XXI vek: itogi proshlogo i problemy nastojashhego pljus. 2018; 7(4): 206–209.
  9. Glushko M.P. Izuchenie triterpenovyh saponinov travy tysjachelistnika shirokolopastnogo Achillea latiloba Ledeb. Izvestija vuzov. Severo-Kavkazskij region. Serija: Estestvennye nauki. 2006; 7: 47–50.
  10. Shelepova O.V., Kuklina A.G., Vinogradova Ju.K. Perspektivy ispol'zovanija v fitoterapii nekotoryh invazionnyh vidov semejstva bobovye. Politematicheskij setevoj jelektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2015; 114: 415–430.
  11. Smuseva S.O., Mironenko N.V., Chiglakova A.O. i dr. Tendencii i perspektivy nauchnyh issledovanij v oblasti izvlechenija, analiza i primenenija glikozidnyh soedinenij pentaciklicheskogo i tetraciklicheskogo rjada (obzor). Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Himija. Biologija. Farmacija. 2020; 1: 18–28.
  12. Shur Ju.V., Sal'nikova D.A. Makroskopicheskij analiz i opredelenie kolichestvennogo soderzhanija summy saponinov v trave Astragalus dolichophyllus Pall. Zametki uchenogo. 2021; 7-1: 175–179.
  13. Sergalieva M.U., Samotrueva M.A., Nurmagomedov M.G. Obnaruzhenie biologicheski aktivnyh veshhestv v trave astragala vzdutogo. Open innovation: Sbornik statej Mezhdunarodnoj nauchno-prakticheskoj konferencii. 2017; 173–175.
  14. Sergalieva M.U., Barskova N.A. Astragal lisij (Astra-galus vulpinus Willd.) – istochnik biologicheski aktivnyh veshhestv. Astrahanskij medicinskij zhurnal. 2017; 12(1): 56–63.
  15. Pozdnjakova T.A., Bubenchikov R.A. Izuchenie triterpenovyh soedinenij astragala belostebel'nogo (Astragalus Albicaulis DC). Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. 2016; 19(12): 24–27.
  16. Zinkevich Je.P., Vecherko L.P. Triterpenovye glikozidy (saponiny). Lekarstvennye rastenija. Himija. M.: Kolos. 1969; 15: 640–691.
  17. Oleszek W., Stochmal A. Triterpene saponins and flavonoids in the seeds of Trifolium species. Phytochemistry. 2002; 61(2): 165–170.
  18. Abramchuk A.V., Karpuhin M.Ju. Biologicheski aktivnyj kompleks solodki goloj (Glycyrrhiza glábra L.). Vestnik biotehnologii. 2020; 2(23): 4.
  19. Byun J.H., Kim J.S., Kang S.S. et al. Triterpenoid saponins from the roots of Sophora koreensis. Chem Pharm Bull (Tokyo). 2004; 870–873.
  20. Almeida A., Dong L., Khakimov B. et al. A Single Oxidosqualene Cyclase Produces the Seco-Triterpenoid α-Onocerin. Plant Physiology. 2018; 1469–1484.
  21. Shaker K.H., Dockendorff К., Bernhardt M. et al. A New Triterpenoid Saponin from Ononis spinosa and Two New Flavonoid Glycosides from Ononis vaginalis. Zeitschrift für Naturforschung B. 2004; 59(1): 124–128.
  22. Kim S., Thiessen P.A., Cheng T. et al. PUG-View: programmatic access to chemical annotations integrated in PubChem. J. Cheminform. 2019; 11(1): 56.
  23. Filimonov D.A., Druzhilovskij D.S., Lagunin A.A. i dr. Komp'juternoe prognozirovanie spektrov biologicheskoj aktivnosti himicheskih soedinenij: vozmozhnosti i ogranichenija. Biomedical Chemistry: Research and Methods. 2018; 1(1): e00004.
  24. Filz O.A., Lagunin A.A., Filimonov D.A. et al. In silico fragment-based drug design using PASS approach. SAR & QSAR in Environmental Research. 2012; 23(3-4): 279–296.
  25. Druzhilovskij D.S., Rudik A.V., Filimonov D.A. i dr. Komp'juternaja platforma Way2Drug: ot prognozirovanija biologicheskoj aktivnosti k repozicionirovaniju lekarstv. Izvestija Akademii nauk. Serija himicheskaja. 2017; 10: 1832–1841.
  26. Poroikov V.V., Filimonov D.A., Gloriozova T.A. et al. Computer-aided prediction of biological activity spectra for organic compounds: the possibilities and limitations. Russian Chemical Bulletin. 2019; 68(12): 2143–2154.
  27. Poroikov V.V., Filimonov D.A., Ihlenfeldt W.D. et al. PASS biological activity spectrum predictions in the enhanced open NCI database browser. Journal of Chemical Information and Computer Sciences. 2003; 43(1): 228–236.
  28. Pogodin P.V., Lagunin A.A., Rudik A.V. et al. AntiBac-Pred: A web application for predicting antibacterial activity of chemical compounds. Journal of Chemical Information and Modeling. 2019; 59(11): 4513–4518.
  29. Liu C.M., Huang J.Y., Sheng L.X. et al. Synthesis and antitumor activity of fluorouracil – oleanolic acid / ursolic acid / glycyrrhetinic acid conjugates. Medchemcomm. 2019; 10(8): 1370–1378.
  30. Liu L., Li H., Hu K. et al. Synthesis and anti-inflammatory activity of saponin derivatives of δ-oleanolic acid. Eur. J. Med. Chem. 2021; 209.
  31. Chu F., Zhang W., Guo W. et al. Oleanolic acid-amino acids derivatives: design, synthesis, and hepatoprotective evaluation in vitro and in vivo. Molecules. 2018; 23(2): 322.
  32. Pertino M.W., Vega C., Rolón M. et al. Antiprotozoal activity of triazole derivatives of dehydroabietic acid and oleanolic acid. molecules. 2017; 22(3): 369.
  33. Khwaza V., Oyedeji O.O., Aderibigbe B.A. Antiviral activities of oleanolic acid and its analogues. molecules. 2018; 23(9): 2300.
  34. Wang C.M., Chen H.T., Wu Z.Y. et al. Antibacterial and Synergistic activity of pentacyclic triterpenoids isolated from Alstonia scholaris. Molecules. 2016; 21(2): 139.
  35. Rai S.N., Zahra W., Singh S.S. et al. Anti-inflammatory activity of ursolic acid in MPTP-induced parkinsonian mouse model. Neurotox Res. 2019; 36(3): 452–462.
  36. Gutiérrez-Rebolledo G.A., Siordia-Reyes A.G., Meckes-Fischer M. et al. Hepatoprotective properties of oleanolic and ursolic acids in antitubercular drug-induced liver damage. Asian Pac J Trop Med. 2016; 9(7): 644–651.
  37. Al Musayeib N.M., Mothana R.A., Gamal A.A. et al. In vitro antiprotozoal activity of triterpenoid constituents of Kleinia odora growing in Saudi Arabia. Molecules. 2013; 18(8): 9207–9218.
  38. Wu P.P., Zhang K., Lu Y.J. et al. In vitro and in vivo evaluation of the antidiabetic activity of ursolic acid derivatives. Eur. J. Med. Chem. 2014; 80: 502–508.
  39. Zhi L., Song D., Ma L. et al. Soyasapogenol B attenuates laryngeal carcinoma progression through inducing apoptotic and autophagic cell death. Anat Rec (Hoboken). 2020; 303(7): 1851–1858.
  40. Jiaju Zhou, Guirong Xie, Xinjian Yan. Encyclopedia of traditional chinese medicines - molecular structures, pharmacological activities, natural sources and applications. Springer Berlin, Heidelberg, 2011; 580.
  41. Xie Q., Gu X., Chen J. et al. Soyasaponins reduce inflammation and improve serum lipid profiles and glucose homeostasis in high fat diet-induced obese mice. Mol. Nutr. Food Res. 2018; 62(19): e1800205.
  42. Sasaki K., Minowa N., Kuzuhara H. et al. Derivatization of soyasapogenol A and their hepatoprotective activities. Bioorg. Med. Chem. Lett. 1998; 8(6): 607–612.
  43. Ikeda T., Yokomizo K., Okawa M. et al. Anti-herpes virus type 1 activity of oleanane-type triterpenoids. Biol. Pharm. Bull. 2005; 28(9): 1779–1781.
  44. Siddique H.R., Saleem M. Beneficial health effects of lupeol triterpene: a review of preclinical studies. Life Sci. 2011; 88(7-8): 285–293.
  45. Kim M., Park S.C., Lee D.Y. Glycyrrhizin as a Nitric Oxide Regulator in Cancer Chemotherapy. Cancers (Basel). 2021; 13(22): 5762.
  46. Pastorino G., Cornara L., Soares S. et al. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother. Res. 2018; 32(12): 2323–2339.
  47. Li J.Y., Cao H.Y., Liu P. et al. Glycyrrhizic acid in the treatment of liver diseases: literature review. Biomed. Res. Int. 2014; 2014: 1–15.
  48. Zhang Lingnan, He Yonghong, Zhang Feifei et al. In vitro study on the effect of glycyrrhizic acid on the growth of Streptococcus mutans in an acidic environment. West China Journal of Stomatology. 2012; 30(6): 594–597.
  49. Feng Y., Mei L., Wang M. et al. Anti-inflammatory and Pro-apoptotic Effects of 18beta-Glycyrrhetinic Acid in vitro and in vivo models of rheumatoid arthritis. Front Pharmacol. 2021; 12: 1–13.
  50. Lou H., Li H., Zhang S. et al. A review on preparation of betulinic acid and its biological activities. Molecules. 2021; 26(18): 5583.
  51. Buko V., Kuzmitskaya I., Kirko S. et al. Betulin attenuated liver damage by prevention of hepatic mitochondrial dysfunction in rats with alcoholic steatohepatitis. Physiol. Int. 2019; 106(4): 323–334.
  52. Domínguez-Carmona D.B., Escalante-Erosa F., García-Sosa K., et al. Antiprotozoal activity of betulinic acid derivatives. Phy-tomedicine. 2010; 17(5): 379–382.
  53. Xiong H., Zheng Y., Yang G. et al. Triterpene saponins with anti-inflammatory activity from the stems of Entada phaseoloides Fitoterapia. 2015; 103: 33–45.
  54. Xiong H., Zhang S., Zhao Z. et al. Antidiabetic activities of entagenic acid in type 2 diabetic db/db mice and L6 myotubes via AMPK/GLUT4 pathway. J. Ethnopharmacol. 2018; 211: 366–374.
  55. Vidya S.M., Krishna V., Manjunatha B.K. et al. Antibacterial and molecular docking studies of entagenic acid, a bioactive principle from seed kernel of Entada pursaetha DC. Med. Chem. Res. 2012; 1016–1022.
  56. He D., Hu G., Zhou A. et al. Echinocystic acid inhibits inflammation and exerts neuroprotective effects in MPTP-induced Parkinson’s disease model mice. Front. Pharmacol. 2022; 12: 1–13.
  57. Garai S., Ghosh R., Bandopadhyay P.P. et al. Anti-microbial and anti-cancer properties of echinocystic acid extracted from Luffa cylindrical. Journal of Food Processing and Technology. 2018; 9: 1–4.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Table 2: Fig. 1

Download (1KB)
3. Table 2: Fig. 2

Download (1KB)
4. Table 2: Fig. 3

Download (2KB)
5. Table 2: Fig. 4

Download (1KB)
6. Table 2: Fig. 5

Download (1KB)
7. Table 2: Fig. 6

Download (1KB)
8. Table 2: Fig. 7

Download (1KB)
9. Table 2: Fig. 8

Download (1KB)
10. Table 2. Fig. 9

Download (1KB)
11. Table 2: Fig. 10

Download (1KB)
12. Table 2: Fig. 11

Download (1KB)
13. Table 2: Fig. 12

Download (1KB)
14. Table 2: Fig. 13

Download (1KB)
15. Table 2: Fig. 14

Download (2KB)
16. Table 2: Fig. 15

Download (1KB)
17. Table 2: Fig. 16

Download (1KB)
18. Table 2: Fig. 17

Download (1KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies