Features of relations of melatonin with the state of intracellular regulators of the functional activity of whole blood mononuclear cells in coronary heart disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Coronary heart disease (CHD), leading among the causes of death in adulthood and old age, is an urgent medical and social problem. The pathogenesis of most forms of coronary heart disease is based on stenosing atherosclerosis of the coronary arteries, which develops against the background of dyslipidemia and arterial hypertension and is accompanied by the activation of immunocompetent cells (ICCs) of the vascular wall with the development of a subclinical inflammatory reaction, as well as the production of pro-inflammatory factors such as interleukins, chemokines, growth factors and etc. In turn, ICC activity is determined by the state of their intracellular molecular cascades, which transmit signals into the cell and ensure its reactivity to various external stimuli, such as mitogens, cytokines, pathogen components, etcIt has been shown that the central nervous system plays an important role in the regulation of ICC activity due to the production of neurohumoral molecules, such as melatonin, endorphin, serotonin, etc., which ensure the coordination of immune responses and their control by the central nervous system.

The aim of this study was to study the relationship between melatonin production and intracellular factors that regulate the pro-inflammatory activity of whole blood mononuclear cells and their metabolism in patients with coronary artery disease.

Material and methods. As part of the cohort study, 58 patients of both sexes with coronary artery disease aged 49 to 67 years and 20 practically healthy individuals of both sexes were examined. In accordance with the purpose of the study, the concentration of focal adhesion protein kinase (FAK), 5'AMP-activated protein kinase (AMPK), AKT1 protein kinase, signal transducers and transcription activators (STAT) was determined in nuclear cytoplasmic lysates of whole blood mononuclear cells: STAT3, STAT5A and STAT6, c-Jun N-terminal protein kinase 1 and 2 isoforms (JNK), mitogen-activated protein kinase p38 (p38), extracellular growth kinase 1 and 2 isoforms (ERK), Janus kinase type 2 (JAK2), nuclear transcription factor NF -kB, caspase-1, cyclooxygenase-2 (COX-2), p70-S6K1 protein kinase, p53, p27, p21 proteins. In addition, the concentration of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) was determined in cell supernatants. Melatonin concentration was determined in blood serum. The material for the study was venous blood taken from the cubital vein in the morning from 6.00 to 6.15.

Results. The analysis showed that in patients with coronary artery disease, in comparison with practically healthy individuals, in MNCs of whole blood, there was an increased level of protein kinases FAK, AKT, JNK, ERK, p70-S6K1, factor STAT6, protein p21, against which there was a decrease in the content of STAT3, STAT5A, JAK2, transcription factor NF-kB and caspase-1. These changes were accompanied by increased levels of cGMP and cAMP. Against this background, a decrease in the content of factors was revealed in the MNC. A high concentration of melatonin in patients with CAD was associated with a decrease in the content of protein kinases AMPK, AKT, Jak2, ERK1, protein p21, caspase-1, and cAMP in MNCs, which was observed against the background of an increase in the level of protein p27 and nuclear factor NF-kB. The results of the correlation analysis indicate a different nature of the relationship between the level of melatonin and such factors as caspase-1, protein kinases ERK, JAK2, as well as the transcription factor NF-kB and p21 protein, depending on the characteristics of melatonin production in patients with coronary artery disease.

Conclusions. In patients with coronary artery disease, melatonin exhibits a modulating effect on the energy balance of ICCs and their metabolism, helps limit pro-inflammatory activity by limiting the functional activity of MAPK/SAPK signaling pathways in MNCs.

Full Text

Restricted Access

About the authors

A. V. Logatkina

Cardiologist, Kaluga Regional Clinical Hospital; Tula State University

Author for correspondence.
Email: Logatkina_a@mail.ru

Post-graduate Student

Russian Federation, Tula; Kaluga

V. S. Nikiforov

I.I. Mechnikov Northwestern Medical University

Email: viktor.nikiforov@szgmu.ru

Dr.Sc. (Med.), Professor

Russian Federation, St. Petersburg

I. V. Terekhov

Kaluga State University named after K.E. Tsiolkovsky

Email: trft@mail.ru

Ph.D. (Med.)

Russian Federation, Kaluga

References

  1. Артериальная гипертензия у взрослых. Клинические рекомендации 2020. Российский кардиологический журнал. 2020; 25(3): 3786. [Arterial hypertension in adults. Clinical guidelines 2020. Rus-sian Journal of Cardiology. 2020;25(3):3786. (In Russ.)]. doi: 10.15829/1560-4071-2020-3-3786.
  2. Severino P., D'Amato A., Pucci M., et al. Ischemic Heart Disease Pathophysiology Paradigms Overview: From Plaque Activation to Microvascular Dysfunction. Int J Mol Sci. 2020;21(21):8118. doi: 10.3390/ijms21218118.
  3. Логаткина А.В., Никифоров В.С., Бондарь С.С., Терехов И.В. Воспалительные цитокины и сигнальные системы мононуклеарных клеток периферической крови при ишемической болезни сердца. Клиническая медицина. 2017; 95(3): 238-244. [Logatkina A.V., Nikiforov V.S., Bondar' S.S., Terekhov I.V. Inflammatory cytokines and signaling systems of peripheral blood mononuclear cells in coronary heart disease. Klinicheskaya medicina. 2017; 95(3): 238-244. (in Russ.)]. doi: 10.12737/44351.
  4. Терехов И.В., Солодухин К.А., Никифоров В.С., Ломоносов А.В. Использование радиоволнового зондирования водосодержащих сред миокарда у больных с артериальной гипертензией. Российский кардиологический журнал. 2013;(5):40-43. [Terekhov I.V., Solodukhin K.A., Nikiforov V.S., Lomonosov A.V. Radiometry of water-containing myocardial tissue in patients with arterial hypertension. Russian Journal of Cardiology. 2013;(5):40-43. (in Russ.)]. doi: 10.15829/1560-4071-2013-5-40-43.
  5. Симбирцев А.С. 2018. Цитокины в патогенезе и лечении заболеваний человека. СПб, ООО «Издательство Фолиант». 512 с. [Simbirtsev A.S. 2018 Cytokines in the pathogenesis and treatment of human diseases. St- Petersburg: Foliant Publishing House, 512 p. (in Russ.)].
  6. Бондарь С.С., Терехов И.В., Никифоров В.С. Взаимосвязи компонентов JAK/STAT- и MAPK/SAPK-сигнальных путей, а также NF-kB и содержания в мононуклеарных клетках цельной крови тиоредоксинредуктазы в постклиническую стадию внебольничной пневмонии. Consilium Medicum. 2018; 20 (11): 61-65 [Bondar S.S., Terekhov I.V., Nikiforov V.S. The relationship of JAK/STAT and MAPK/SAPK signaling pathways, NF-kB and content in the mononuclear cells of whole blood thioredoxins in the post-clinical stage of community-acquired pneumonia. Consilium Medicum. 2018; 20 (11): 61-65. (in Russ.)] doi: 10.26442/20751753.2018.11.180091.
  7. Jeon S.M. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016; 48(7): e245. doi: 10.1038/emm.2016.81.
  8. Zhao X., Qi H., Zhou J., Xu S., Gao Y. P27 Protects Cardiomyocytes from Sepsis via Activation of Autophagy and Inhibition of Apoptosis. Med Sci Monit. 2018; 24: 8565-8576. doi: 10.12659/MSM.912750.
  9. Shamloo B., Usluer S. p21 in Cancer Research. Cancers (Basel). 2019;11(8):1178. doi: 10.3390/cancers11081178.
  10. Kim E., Cho S. CNS and peripheral immunity in cerebral ischemia: partition and interaction. Exp Neurol. 2021; 335: 113508. doi: 10.1016/j.expneurol.2020.113508.
  11. Yabut J.M., Crane J.D., Green A.E. et al. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr Rev. 2019;40(4):1092-1107. doi: 10.1210/er.2018-00283.
  12. Pilozzi A., Carro C., Huang X. Roles of β-Endorphin in Stress, Behavior, Neuroinflammation, and Brain Energy Metabolism. Int J Mol Sci. 2020;22(1):338. doi: 10.3390/ijms22010338.
  13. Sangchart P., Panyatip P., Damrongrungruang T., et al. Anti-Inflammatory Comparison of Melatonin and Its Bro-mobenzoylamide Derivatives in Lipopolysaccharide (LPS)-Induced RAW 264.7 Cells and Croton Oil-Induced Mice
  14. Ear Edema. Molecules. 2021; 26(14): 4285. doi: 10.3390/molecules26144285.
  15. Chitimus D.M., Popescu M.R., Voiculescu S.E. et al. Melatonin's Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules. 2020;10(9):1211. doi: 10.3390/biom10091211.
  16. Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci. 2019;20(5):1223. doi: 10.3390/ijms20051223.
  17. Xia Y., Chen S., Zeng S. et al. Melatonin in macrophage biology: Current understanding and future perspectives. J Pineal Res. 2019; 66(2): e12547. doi: 10.1111/jpi.12547.
  18. Jäkel H., Weinl C., Hengst L. Phosphorylation of p27Kip1 by JAK2 directly links cytokine receptor signaling to cell cycle control. Oncogene. 2011;30(32):3502-12. doi: 10.1038/onc.2011.68.
  19. Nakai A., Suzuki K. Adrenergic control of lymphocyte trafficking and adaptive immune responses. Neurochem Int. 2019; 130: 104320. doi: 10.1016/j.neuint.2018.10.017.
  20. Moriyama S., Brestoff J.R., Flamar A.L. et al. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science. 2018; 359(6379): 1056-1061. doi: 10.1126/science.aan4829.
  21. Sevastre-Berghian A.C., Casandra C., Gheban D. et al. Neurotoxicity of Bisphenol A and the Impact of Melatonin Administration on Oxidative Stress, ERK/NF-kB Signaling Pathway, and Behavior in Rats. Neurotox Res. 2022;40(6):1882-1894. doi: 10.1007/s12640-022-00618-z.
  22. Colombe A.S., Pidoux G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells. 2021;10(4):922. doi: 10.3390/cells10040922.
  23. Liu X., Wang L., Wang Z. et al. Mel1b and Mel1c melatonin receptors mediate green light-induced secretion of growth hormone in chick adenohypophysis cells via the AC/PKA and ERK1/2 signalling pathways. J Photochem Photobiol B. 2021; 225:112322. doi: 10.1016/j.jphotobiol.2021.112322.
  24. Razavipour S.F., Harikumar K.B., Slingerland J.M. p27 as a Transcriptional Regulator: New Roles in Development and Cancer. Cancer Res. 2020;80(17):3451-3458. doi: 10.1158/0008-5472.CAN-19-3663.
  25. Ajoolabady A., Bi Y., McClements D.J. et al. Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy. Pharmacol Res. 2022; 176:106072. doi: 10.1016/j.phrs.2022.106072.
  26. Хадарцев А.А., Логаткина А.В., Терехов И.В., Бондарь С.С. Динамика проявлений метаболического синдрома у пациентов с артериальной гипертензией на фоне комплексного использования низкоинтенсивной микро-волновой терапии. Артериальная гипертензия. 2018; 24(2): 206-216. [Khadartcev A.A., Logatkina A.V., Terekhov I.V., Bondar S.S. Metabolic changes in hypertensive patients treated by low-intensity microwave therapy. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2018; 24(2):
  27. -216. (in Russ.)]. doi: 10.18705/1607-419X-2018-24-2-206-216.
  28. Логаткина А.В., Никифоров В.С., Бондарь С.С. и др. Взаимосвязь экспрессии рецепторов 1-го типа к ангио-тензину II и вазоактивных регуляторов при артериальной гипертензии. CardioСоматика. 2020; 11(3): 16-21. [Logatkina A.V., Nikiforov V.S., Bondar S.S. et al. Relationship between the expression of angiotensin II receptors type 1 and vasoactive regulators in arterial hy-pertension. Cardiosomatics. 2020; 11(3): 16-21. (in Russ.)]. doi: 10.26442/22217185.2020.3.200408.
  29. Zhao Y., Zhao Y., Tian Y., Zhou Y. Metformin suppresses foam cell formation, inflammation and ferroptosis via the AMPK/ERK signaling pathway in ox LDL induced THP 1 monocytes. Exp Ther Med. 2022; 24(4):636. doi: 10.3892/etm.2022.11573.
  30. Di S., Wang Z., Hu W., Yan X. et al. The Protective Effects of Melatonin Against LPS-Induced Septic Myocardial Injury: A Potential Role of AMPK-Mediated Autophagy. Front Endocrinol (Lausanne). 2020;1 1:162. doi: 10.3389/fendo.2020.00162.
  31. Aslam M., Ladilov Y. Emerging Role of cAMP/AMPK Signaling. Cells. 2022;11(2):308. doi: 10.3390/cells11020308.
  32. Liu W., Yu M., Xie D. et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11(1):259. doi: 10.1186/s13287-020-01756-x. PMID: 32600435.
  33. Zhang Y., Wang Y., Xu J. et al. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J Pineal Res. 2019;66(2):e12542. doi: 10.1111/jpi.12542.
  34. Koh P.O. Melatonin prevents ischemic brain injury through activation of the mTOR/p70S6 kinase signaling pathway. Neurosci Lett. 2008;444(1):74-8. doi: 10.1016/j.neu-let.2008.08.024.
  35. Kilic U., Caglayan A.B., Beker M.C. et al. Particular phosphorylation of PI3K/Akt on Thr308 via PDK-1 and PTEN mediates melatonin's neuroprotective activity after focal cerebral ischemia in mice. Redox Biol. 2017; 12: 657-665. doi: 10.1016/j.redox.2017.04.006.
  36. Терехов И.В., Солодухин К.А., Никифоров В.С. Особен-ности биологического эффекта низкоинтенсивного СВЧ-облучения в условиях антигенной стимуляции моно-нуклеаров цельной крови. Физиотерапевт. 2013;1: 26-32. [Terekhov I.V., Solodukhin K.A., Nikiforov V.S. Features of the biological effect of low-intensity microwave irradiation under conditions of antigenic stimulation of whole blood mononuclears. Physiotherapist. 2013;1: 26-32. (in Russ.)].
  37. Zhao C.N., Wang P., Mao Y.M. et al. Potential role of melatonin in autoimmune diseases. Cytokine Growth Factor Rev. 2019; 48: 1-10. doi: 10.1016/j.cytogfr.2019.07.002.
  38. Karasek M., Gruszka A., Lawnicka H. et al. Melatonin inhibits growth of diethylstilbestrol-induced prolactin-secreting pituitary tumor in vitro: possible involvement of nuclear RZR/ROR receptors. J Pine-al Res. 2003;34(4):294-6. doi: 10.1034/j.1600-079x.2003.00046.x.
  39. Заславская Р.М. Эффективность мелатонина при ишеми-ческой болезни сердца. Клиническая медицина. 2022; 100(6): 285-287. [Zaslavskaya R.M. The effectiveness of melatonin in coronary heart disease. Clinical Medicine (Russian Journal). 2022;100(6):285-287. (In Russ.)]. doi: 10.30629/0023-2149-2022-100-6-285-287.
  40. Драпкина О.М., Концевая А.В., Будневский А.В. et al. Ме-латонин и сердечно-сосудистая патология: от механиз-мов действия к возможностям клинического применения (обзор литературы). Кардиоваскулярная терапия и про-филактика. 2021;20(8):2892. [Drapkina O.M., Kontsevaya A.V., Budnevsky A.V. et al. Melatonin and cardiovascular disease: from mechanisms of action to poten-tial clinical use (literature review). Cardiovascular Therapy and Prevention. 2021;20(8):2892. (In Russ.)]. doi: 10.15829/1728-8800-2021-2892.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1.

Download (428KB)
3. Fig.2.

Download (458KB)
4. Fig.3.

Download (265KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies