The ambiguous role of the matricellular protein tenascin-C in skin wound healing
- 作者: Asyakina A.S.1, Melkonyan K.I.1, Rusinova T.V.1, Soloviy D.O.1
-
隶属关系:
- Kuban State Medical University of Public Health Care of Russia
- 期: 卷 28, 编号 5 (2025)
- 页面: 56-64
- 栏目: Articles
- URL: https://journals.eco-vector.com/1560-9596/article/view/687962
- DOI: https://doi.org/10.29296/25877313-2025-07-07
- ID: 687962
如何引用文章
详细
Traditional methods for treating extensive skin injuries have certain limitations regarding; therefore, the search for innovative materials and approaches to optimize wound regeneration processes continues to require particular attention. One of the less-studied extracellular matrix proteins in the context of skin wound healing is Tenascin-C (TN-C). At present, its role as a biomarker in tumor processes has been studied in considerable detail, while data on its regenerative properties remain limited. This article examines the mechanisms of action of TN-C, its interactions with cellular structures and signaling pathways, and summarizes the findings of existing studies that highlight its therapeutic potential in stimulating tissue regeneration and improving healing outcomes. TN-C exhibits a multidomain structure, with each domain interacting with specific ligands. This paper presents a deeper understanding of the functional characteristics of each domain, yielding updated information on the properties of TN-C. The review also aims to identify gaps in current knowledge and to determine directions for future research in the field of regenerative medicine. The aim of the study is a comprehensive analysis of current data on the protein Tenascin-C and its potential role as an active component in the process of skin wound healing. The informational and analytical search was conducted through the examination and synthesis of contemporary scientific data available on electronic resources such as PubMed, Web of Science, ScienceDirect, Scopus, Google Scholar, and eLibrary. The literature search was performed using the following keywords: Tenascin-C, wound healing, matricellular proteins, and cell proliferation. Articles published over the past 20 years were analyzed. Based on the results of the literature review, it can be concluded that additional preclinical studies of the investigated protein TN-C as a wound regeneration stimulator are warranted, specifically during the inflammatory and proliferative phases. In the remodeling phase, it may be more appropriate to utilize inhibitors of TN-C expression to avoid the formation of hypertrophic scars.
全文:

作者简介
A. Asyakina
Kuban State Medical University of Public Health Care of Russia
编辑信件的主要联系方式.
Email: alevtina.asyakina@mail.ru
ORCID iD: 0000-0002-5596-7783
SPIN 代码: 4328-3599
Post-graduate Student of the Department of Fundamental and Clinical Biochemistry, Junior Research Laboratory Assistant of the Central Research Laboratory
俄罗斯联邦, Mitrofana Sedina str., 4, Krasnodar, 350063K. Melkonyan
Kuban State Medical University of Public Health Care of Russia
Email: kimelkonian@gmail.com
ORCID iD: 0000-0003-2451-6813
SPIN 代码: 2461-8365
Ph.D. (Med.), Associate Professor, Head of the Central Research Laboratory
俄罗斯联邦, Mitrofana Sedina str., 4, Krasnodar, 350063T. Rusinova
Kuban State Medical University of Public Health Care of Russia
Email: rusinova.tv@mail.ru
ORCID iD: 0000-0003-2962-3212
SPIN 代码: 9591-0848
Researcher Laboratory of the Central Research Laboratory
俄罗斯联邦, Mitrofana Sedina str., 4, Krasnodar, 350063D. Soloviy
Kuban State Medical University of Public Health Care of Russia
Email: dima.solovey.1987@mail.ru
ORCID iD: 0009-0009-5359-7086
SPIN 代码: 1186-1513
Post-graduate Student of the Department of Fundamental and Clinical Biochemistry
俄罗斯联邦, Mitrofana Sedina str., 4, Krasnodar, 350063参考
- Шурыгина И.А, Шурыгин М.Г., Аюшинова Н.И. и др. Фибробласты и их роль в развитии соединительной ткани. Байкальский медицинский журнал. 2012; 110(3): 8–12. [Shurygina I.A., Shurygin M.G., Ayushinova N.I.et al. Fibroblasts and their role in the development of connective tissue. Baikal Medical Journal. 2012; 110(3): 8–12. (In Russ.)].
- Lyu W., Ma Y., Chen S. et al. Flexible ultrasonic patch for accelerating chronic wound healing. Advanced Healthcare Materials. 2021; 10(19): 2100785. doi: 10.1002/adhm.202100785.
- Jones S.M., Banwell P.E., Shakespeare P.G. Advances in wound healing: topical negative pressure therapy. Postgraduate medical journal. 2005; 81(956): 353–357. doi: 10.1136/pgmj.2004.026351.
- Yamakawa S., Hayashida K. Advances in surgical applications of growth factors for wound healing. Burns & Trauma. 2019; 7: s41038–019–0148–1. doi: 10.1186/s41038-019-0148-1.
- Ушмаров Д.И., Гуменюк А.С., Гуменюк С.Е. и др. Срав-нительная оценка многофункциональных раневых покрытий на основе хитозана: многоэтапное рандомизи-рованное контролируемое экспериментальное исследо-вание. Кубанский научный медицинский вестник. 2021; 28(3): 78–96. [Ushmarov D.I., Humeniuk A.S., Humeniuk S.E. et al. Comparative evaluation of multifunctional wound dressings based on chitosan: a multi-stage randomized controlled experimental study. Kuban Scientific Medical Bulletin. 2021; 28(3): 78–96. (In Russ.)]. doi: 10.25207/1608-6228-2021-28-3-78-96.
- Firooz M., Hosseini J., Mobayen M. et al. The future for the application of fibroblast growth factor 2 in modern wound healing. Burns. 2022; 49: 247–492. doi: 10.1016/j.burns.2022.10.007.
- Хорольская Ю.И., Александрова О.И., Самусенко И.А. и др. Влияние растворимого рекомбинантного белка Dll4-Fc на функциональную активность эндотелиоцитов in vitro и васкуляризацию in vivo. Цитология. 2019; 61(3): 218–225. [Khorolskaya Yu.I., Aleksandrova O.I., Samusenko I.A. et al. The influence of soluble recombinant protein Dll4-Fc on the functional activity of endothelial cells in vitro and vascularization in vivo. Cytology. 2019; 61(3): 218–225. (In Russ.)]. doi: 10.1134/s0041377119030064.
- Hsu Y.C., Fuchs E. Building and maintaining the skin. Cold Spring Harbor perspectives in biology. 2022; 14(7): a040840. doi: 10.1101/cshperspect.a040840.
- Образцова А.Е., Ноздреватых А.А. Морфофункцио-нальные особенности репаративного процесса при за-живлении кожных ран с учетом возможных рубцовых деформаций (обзор литературы). Вестник новых меди-цинских технологий. 2021; 15(1). [Obraztsova A.E., Nozd-revatykh A.A. Morphofunctional features of the reparative process during the healing of skin wounds, taking into account possible cicatricial deformities (literature review). Bulletin of new medical technologies. 2021; 15(1). (In Russ.)]. doi: 10.24412/2075-4094-2021-1-3-3.
- Tottoli E.M., Dorati R., Genta I. et al. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020; 12(8): 735. doi: 10.3390/pharmaceutics12080735.
- Zhou S., Xie M., Su J. et al. New insights into balancing wound healing and scarless skin repair. Journal of Tissue Engineering. 2023; 14: 20417314231185848. doi: 10.1177/20417314231185848.
- Makrantonaki E., Wlaschek M., Scharffetter‐Kochanek K. Pathogenesis of wound healing disorders in the elderly. JDDG: Journal der Deutschen Dermatologischen Gesellschaft. 2017; 15(3): 255–275. doi: 10.1111/ddg.13199.
- Amiri N., Golin A.P., Jalili R.B. et al. Roles of cutaneous cell‐cell communication in wound healing outcome: an emphasis on keratinocyte‐fibroblast crosstalk. Experimental Dermatology. 2022; 31(4): 475–484. doi: 10.1111/exd.14516.
- Муромцева Е.В., Сергацкий К.И., Никольский В.И. и др. Лечение ран в зависимости от фазы раневого процесса. Известия высших учебных заведений. Поволжский ре-гион. Медицинские науки. 2022; 3(63): 93–109. [Murom-tseva E.V., Sergatsky K.I., Nikolsky V.I. et al. Treatment of wounds depending on the phase of the wound process. News of higher educational institutions. Volga region. Medical Sciences. 2022; 3(63): 93–109. (In Russ.)]. doi: 10.21685/2072-3032-2022-3-9.
- Reinke J.M., Sorg H. Wound repair and regeneration. European surgical research. 2012; 49(1): 35–43. doi: 10.1159/000339613.
- Potekaev N.N., Borzykh O.B., Medvedev G.V. et al. The role of extracellular matrix in skin wound healing. Journal of Clinical Medicine. 2021; 10(24): 5947. doi: 10.3390/jcm10245947.
- Roberts D.D. Emerging functions of matricellular proteins. Cellular and Molecular Life Sciences. 2011; 68(19): 3133–3136. doi: 10.1007/s00018-011-0779-2.
- Jayakumar A.R., Apeksha A., Norenberg M.D. Role of matricellular proteins in disorders of the central nervous system. Neurochemical research. 2017; 42: 858–875. doi: 10.1007/s11064-016-2088-5.
- Orend G. Potential oncogenic action of tenascin-C in tumorigenesis. The international journal of biochemistry & cell biology. 2005; 37(5): 1066–1083. doi: 10.1016/j.biocel.2004.12.002.
- Midwood K.S, Hussenet T., Langlois B. et al. Advances in tenascin-c biology Cellular and molecular life sciences. 2011; 68(19): 3175–3199. doi: 10.1007/s00018-011-0783-6.
- Ingham K.C., Brew S.A., Erickson H.P. Localization of a cryptic binding site for tenascin on fibronectin. Journal of Biological Chemistry. 2004; 279(27): 28132–28135. doi: 10.1074/jbc.m312785200.
- Hasegawa M., Yoshida T., Sudo A. Tenascin-C in osteoarthritis and rheumatoid arthritis. Frontiers in Immunology. 2020; 11: 577015. doi: 10.3389/fimmu.2020.577015.
- Golledge J., Clancy P., Maguire J. et al. The role of tenascin C in cardiovascular disease. Cardiovascular research. 2011; 92(1): 19–28. doi: 10.1093/cvr/cvr183.
- Saika S., Sumioka T., Okada Y. et al. Wakayama symposium: modulation of wound healing response in the corneal stroma by osteopontin and tenascin-C. The ocular surface. 2013; 11(1): 12–15. doi: 10.1016/j.jtos.2012.09.002.
- Suzuki H., Fujimoto M., Kawakita F. et al. Tenascin‐C in brain injuries and edema after subarachnoid hemorrhage: findings from basic and clinical studies. Journal of Neuroscience Research. 2020; 98(1): 42–56. doi: 10.1002/jnr.24330.
- Jones F.S., Jones P.L. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Developmental dynamics: an official publication of the American Association of Anatomists. 2000; 218(2): 235–259. doi: 10.1002/(SICI)1097-0177(200006)218:2<235::AID-DVDY2>3.0.CO;2-G.
- Swindle C.S, Tran K.T, Johnson T.D. et al. Epidermal growth factor (EGF)-like repeats of human tenascin-c as ligands for EGF receptor. The Journal of cell biology. 2001; 154(2): 459–68. doi: 10.1083/jcb.200103103.
- Udalova I.A., Ruhmann M., Thomson S.J. et al. Expression and immune function of tenascin-C. Critical Reviews™ in Immunology. 2011; 31(2). doi: 10.1615/critrevimmunol.v31.i2.30.
- Lowy C.M., Oskarsson T. Tenascin C in metastasis: A view from the invasive front. Cell adhesion & migration. 2015; 9(1-2): 112–124. doi: 10.1080/19336918.2015.1008331.
- Iyoda T., Fujita M., Fukai F. Biologically active TNIIIA2 region in tenascin-C molecule: a major contributor to elicit aggressive malignant phenotypes from tumors/tumor stroma. Frontiers in immunology. 2020; 11: 610096. doi: 10.3389/fimmu.2020.610096 .
- Benbow J.H., Elam A.D., Bossi K.L. et al. Analysis of plasma tenascin-C in post-HCV cirrhosis: a prospective study. Digestive Diseases and Sciences. 2018; 63: 653–664. doi: 10.1007/s10620-017-4860-z.
- Estany S., Vicens-Zygmunt V., Llatjos R. et al. Lung fibrotic tenascin-C upregulation is associated with other extracellular matrix proteins and induced by TGFbeta1. BMC pulmonary medicine. 2014; 14: 120. doi: 10.1186/1471-2466-14-120.
- Izumi K., Miyazaki N., Okada H. et al. Tenascin-C expression in renal biopsies from patients with tubulointerstitial nephritis and its relation to disease activity and prognosis. International Journal of Clinical and Experimental Pathology. 2020; 13(7): 1842.
- Xu Y., Li N., Gao J. et al. Elevated serum tenascin-C predicts mortality in critically ill patients with multiple organ dysfunction. Frontiers in Medicine. 2021; 8: 759273. doi: 10.1681/asn.20203110s175b.
- Seifert A.W., Monaghan J.R., Voss S.R. et al. Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PloS one. 2012; 7(4): e32875. doi: 10.1371/journal.pone.0032875.
- Iyoda T., Ohishi A., Wang Y. et al. Bioactive TNIIIA2 Sequence in Tenascin-C Is Responsible for Macrophage Foam Cell Transformation; Potential of FNIII14 Peptide Derived from Fibronectin in Suppression of Atherosclerotic Plaque Formation. International Journal of Molecular Sciences. 2024; 25(3): 1825. doi: 10.3390/ijms25031825.
- Torii S., Nakayama K., Yamamoto T. et al. Regulatory mechanisms and function of ERK MAP kinases. Journal of biochemistry. 2004; 136(5): 557–561. doi: 10.1093/jb/mvh159.
- Midwood K., Sacre S., Piccinini A.M. et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nature medicine. 2009; 15(7): 774–780. doi: 10.1038/nm.1987.
- Chen L., Guo S., Ranzer M.J. et al. Toll-like receptor 4 has an essential role in early skin wound healing. Journal of Investigative Dermatology. 2013; 133(1):2 58–267. doi: 10.1038/jid.2013.529.
- Соболева М.Ю. Морфофункциональные особенности восстановления целостности кожи при термической травме. Научно-практический рецензируемый журнал Клиническая и экспериментальная морфология. 2019; 8(1): 71–77. [Soboleva M.Yu. Morphofunctional features of restoration of skin integrity during thermal injury. Scientific and practical peer-reviewed journal Clinical and Experimental Morphology. 2019; 8(1): 71–77. (In Russ.)]. doi: 10.31088/2226-5988-2019-29-1-71-77.
- Zhong W., Wang J., Liu W. et al. Tenascin-C Promotes Skin Inflammation and Wounds Healing after Scalding in Rats by Inducing Infiltration of Macrophages. 2022. doi: 10.21203/rs.3.rs-1339783/v1.
- DiPietro L.A. Angiogenesis and wound repair: When enough is enough. Journal of Leucocyte Biology. 2016; 100: 979–984. doi: 10.1189/jlb.4MR0316-102R.
- Boniakowski A.E., Kimball A.S., Joshi A. et al. Murine macrophage chemokine receptor CCR2 plays a crucial role in macrophage recruitment and regulated inflammation in wound healing. European journal of immunology. 2018; 48(9): 1445–1455. doi: 10.1002/eji.201747400.
- Gushiken L.F.S., Beserra F.P., Bastos J.K. et al. Cutaneous wound healing: An update from physiopathology to current therapies. Life. 2021; 11(7): 665. doi: 10.3390/life11070665.
- Choi Y.E., Song M.J., Hara M. et al. Effects of tenascin C on the integrity of extracellular matrix and skin aging. International journal of molecular sciences. 2020; 21(22): 8693. doi: 10.3390/ijms21228693.
- Wang Y., Wang G., Liu H. Tenascin-C: a key regulator in angiogenesis during wound healing. Biomolecules. 2022; 12(11): 1689. doi: 10.3390/biom12111689.
- Yamagishi S.I., Matsui T. Pigment Epithelium-Derived Factor: A Novel Therapeutic Target for Cardiometabolic Diseases and Related Complications. Current Medicinal Chemistry. 2018; 25: 1480–1500. doi: 10.2174/0929867324666170608103140.
补充文件
