Disturbance of the night melatonin secretion in patients with the metabolic phenotype of osteoarthritis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The high prevalence of obesity increases the importance of understanding the control of disease progression and associated metabolic abnormalities. Recent studies have revealed melatonin as a cause of degenerative joint diseases and a molecular link between sleep disorders and metabolic diseases, due to its powerful biological functions that have a specific effect on the metabolism of osteochondral tissue. Thus, melatonin plays an important role in the regulation of the sleep/wake cycle, adaptation to environmental changes and is considered a key mediator of pathological processes such as osteoarthritis.

Aim – to assess the severity of somnological disorders and the level of nocturnal secretion of the pineal hormone melatonin in patients with the metabolic phenotype of osteoarthritis.

Material and Methods. 80 patients has took part in the study. Participants were divided into 2 groups: group 1 – patients without joint pathology and normal body mass index; group 2 - patients with the metabolic phenotype of osteoarthritis. The subjects underwent a collection of complaints, anamnesis, as well as a general clinical and orthopedic examination. Serum melatonin levels were determined.

Results. Patients with the metabolic phenotype of osteoarthritis showed dysfunction in scores on the subcomponents of sleep quality and quantity. Patients demonstrated a tendency to daytime sleepiness, dissatisfaction with sleep duration, and frequent awakenings at night, which may be due to pain and symptoms of osteoarthritis. It was found that patients with the metabolic phenotype of osteoarthritis showed a decrease in nocturnal excretion of the pineal gland hormone melatonin in comparison with patients in group 1.

Conclusions. The findings support the growing evidence of a significant interaction between melatonin secretion and metabolically associated diseases.

Full Text

Restricted Access

About the authors

D. R. Shodiev

Ryazan State Medical University

Author for correspondence.
Email: shodiev.dima@yandex.ru
ORCID iD: 0000-0002-4530-2964
SPIN-code: 3556-4398

Post-graduate Student of Department of Biochemistry

Russian Federation, Vysokovoltnaya str., 9, Ryazan, 390026

V. I. Zvyagina

Ryazan State Medical University

Email: vizvyagina@yandex.ru
ORCID iD: 0000-0003-2800-5789
SPIN-code: 7553-8641

Dr.Sc. (Med.), Associated Professor of Department of Biochemistry

 

Russian Federation, Vysokovoltnaya str., 9, Ryazan, 390026

M. N. Ryabova

Ryazan State Medical University

Email: rmn62doc@yandex.ru
ORCID iD: 0000-0002-1707-2567
SPIN-code: 2077-3173

Ph.D. (Med.), Associated Professor of Department of General Surgery, Traumatology and Orthopedics

Russian Federation, Vysokovoltnaya str., 9, Ryazan, 390026

Yu. A. Marsyanova

Ryazan State Medical University

Email: yuliyamarsyanova@yahoo.com
ORCID iD: 0000-0003-4948-4504
SPIN-code: 4075-3169

Assistent of Department of Biochemistry

Russian Federation, Vysokovoltnaya str., 9, Ryazan, 390026

References

  1. World Obesity Federation, World Obesity Atlas 2023; https://data.worldobesity.org/publications/?cat=19.
  2. Żylińska B., Sobczyńska-Rak A., Lisiecka U. et al. Structure and Pathologies of Articular Cartilage. In Vivo. 2021; 35(3): 13551363. doi: 10.21873/invivo.12388.
  3. Knights A.J., Redding S.J., Maerz T. Inflammation in osteoarthritis: the latest progress and ongoing challenges. Current opinion in rheumatology. 2023; 35(2): 128–134. doi: 10.1097/BOR.0000000000000923.
  4. Фалетрова С.В., Урясьев О.М., Бельских Э.С. Изучение влияния жировой ткани на уровень маркеров карбониль-ного стресса у пациентов с хронической обструктивной болезнью легких при неинфекционном обострении. Нау-ка молодых (Eruditio Juvenium). 2024; 12(1): 45–54. [Faletrova S.V., Uryas'ev O.M., Bel'skih E.S. Izuchenie vliyaniya zhirovoj tkani na uroven' markerov karbonil'nogo stressa u pacientov s hronicheskoj obstruktivnoj bolezn'yu legkih pri neinfekcionnom obostrenii. Nauka molodyh (Eruditio Juvenium). 2024; 12(1): 45–54. (In Russ.)]; https://doi.org/10.23888/HMJ202412145-54
  5. Белова С.В., Зубавленко Р.А., Гладкова Е.В., Бабушкина И.В., Ульянов В.Ю. Свободно-радикальное окисление и обменные процессы хрящевой и костной тканей у жи-вотных с хирургической моделью посттравматического остеоартроза. Российский медико-биологический вестник им. академика И.П. Павлова. 2023; 31(2): 177–184. [Belova S.V., Zubavlenko R.A., Gladkova E.V., Babushkina I.V., Ul'yanov V.Y. Free Radical Oxidation and Metabolic Processes of Cartilage and Bone Tissues in Animals with Surgical Model of Posttraumatic Osteoarthrosis. I.P. Pavlov Russian Medical Biological Herald. 2023; 31(2): 177–184. (In Russ.)]. doi: 10.17816/PAVLOVJ111575.
  6. Xu Z., You W., Liu J. et.al. Elucidating the Regulatory Role of Melatonin in Brown, White, and Beige Adipocytes. Adv Nutr. 2020; 11(2): 447–460. doi: 10.1093/advan-ces/nmz070.
  7. Zhang Y., Liu T., Yang H. et.al. Melatonin: A novel candidate for the treatment of osteoarthritis. Ageing research reviews. 2022; 78: 101635. doi: 10.1016/j.arr.2022.101635.
  8. Liu S.C., Tsai C.H., Wang Y.H. et al. Melatonin abolished proinflammatory factor expression and antagonized osteoarthritis progression in vivo. Cell death & disease. 2022; 13(3): 215. doi: 10.1038/s41419-022-04656-5.
  9. Bhattacharya S., Patel K.K., Dehari D. et.al. Melatonin and its ubiquitous anticancer effects. Molecular and cellular biochemistry. 2019; 462(1-2): 133–155. doi: 10.1007/s11010-019-03617-5.
  10. Zhang Y., Hou M., Liu Y. et al. Recharge of chondrocyte mitochondria by sustained release of melatonin protects cartilage matrix homeostasis in osteoarthritis. Journal of pineal research. 2022; 73(2): e12815. doi: 10.1111/jpi.12815.
  11. Bagherifard A., Hosseinzadeh A., Koosha F. et al. Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects. Osteoporos Int. 2023; 34(10): 1677–1701. doi: 10.1007/s00198-023-06836-1.
  12. Xie W.Q., Chen S.F., Tao X.H. et al. Melatonin: Effects on Cartilage Homeostasis and Therapeutic Prospects in Cartilage-related Diseases. Aging Dis. 2021; 12(1): 297–307. Published 2021 Feb 1. doi: 10.14336/AD.2020.0519.
  13. Nazeri T., Hedayatpour A., Kazemzadeh S. et.al. Antioxidant Effect of Melatonin on Proliferation, Apoptosis, and Oxidative Stress Variables in Frozen-Thawed Neonatal Mice Spermatogonial Stem Cells. Biopreserv Biobank. 2022; 20(4): 374–383. doi: 10.1089/bio.2021.0128.
  14. Шодиев Д.Р., Звягина В.И., Рябова М.Н., Дмитриева М.Н. Клинико-биохимические изменения и их коррекция у больных с метаболическим фенотипом остеоартроза и инсомнией. Ожирение и метаболизм. 2023; 20(2): 104–114. [Shodiev D.R., Zvyagina V.I., Ryabova M.N., Dmitrieva M.N. Clinical and biochemical changes and their correction in patients with metabolic phenotype of osteoarthritis and insomnia. Obesity and metabolism. 2023; 20(2): 104–114. (In Russ.)]; https://doi.org/10.14341/omet12888.
  15. Rzepka-Migut B., Paprocka J. Melatonin-Measurement Me-thods and the Factors Modifying the Results. A Systematic Review of the Literature. International journal of environmental research and public health. 2020; 17(6): 1916; https://doi.org/10.3390/ijerph17061916.
  16. Buysse D.J., Reynolds C.F., Monk T.H. et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989; 28: 193–213.
  17. Danilenko K.V., Verevkin E.G., Antyufeev V.S. et al. The ho-ckey-stick method to estimate evening dim light melatonin onset (DLMO) in humans. Chronobiol Int. 2014; 31: 349–355.
  18. Meisagh Asanjani Oskoii ID, Nasrin Khatami, Maryam Majidinia et al. Serum level of melatonin in patients with osteoarthritis and its relation with 8-hydroxy-2-deoxyguanosine and vitamin D. J Res Clin Med. 2020; 8: 34. doi: 10.34172/jrcm.2020.034.
  19. Pan F., Tian J., Cicuttini F. et al. Sleep Disturbance and Its Association with Pain Severity and Multisite Pain: A Prospective 10.7-Year Study. Pain Ther. 2020; 9(2): 751–763. doi: 10.1007/s40122-020-00208-x.
  20. Vaughan G.M. New sensitive serum melatonin radioimmunoassay employing the Kennaway G280 antibody: Syrian hamster morning adrenergic response. J Pineal Res. 1993; 15: 88–103.
  21. Fourtillan J.B., Gobin P., Faye B. et al. A highly sensitive assay of melatonin at the femotogram level in human plasma by gas chromatography/negative ion chemical ionization mass spectrometry. Biol Mass Spectrom. 1994; 23: 499–509.
  22. Junemann O., Bukreeva I., Otlyga D. Human pineal gland involutionary process: new findings. The journals of gerontology. Series A, Biological sciences and medical sciences. 2023; glad091. doi: 10.1093/gerona/glad091.
  23. Haack M., Sanchez E., Mullington J.M. Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep. 2007; 30(9):1145–52. doi: 10.1093/sleep/30.9.1145.
  24. Smith M.T., Quartana P.J., Okonkwo R.M., Nasir A. Mechanisms by which sleep disturbance contributes to osteoarthritis pain: a conceptual model. Current pain and headache reports. 2009; 13(6): 447–54. doi: 10.1007/s11916-009-0073-2.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The level of night melatonin seсretion in the blood serum of the studied groups of patients pg/ml

Download (45KB)
3. Fig. 2. Correlation between the level of nighttime melatonin secretion in the blood serum and the level of symptom severity according to the KOOS scale in patients of group 2

Download (57KB)

Copyright (c) 2025 Russkiy Vrach Publishing House