Role of bioenergetic hypoxia in the morphological transformation of the myocardium during vibration disease

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Analysis of literature on the structural changes in the heart in patients with vibration disease using echocardiographic research methods revealed a concentric type of remodeling of the left ventricular chambers, which is associated with a high risk of cardiovascular complications, including sudden cardiac death, in people of working age.

AIM: To determine the role of bioenergetic hypoxia in the development of morphological transformation of the myocardium to substantiate the efficacy of pharmacotherapy for vibration disease.

MATERIALS AND METHODS: The energy production activity of cellular systems of heart tissue in vitro was analyzed by the polarographic method using a closed galvanic-type oxygen sensor (Clark electrode). The stressful effects of vibration were confirmed by the dynamics of the morphohistological picture of changes in the myocardial tissue of the left ventricle in the apical region after standard alcohol–paraffin wiring and staining of histological preparations with hematoxylin and eosin.

RESULTS: Evaluation of the morphometric and bioenergetic parameters of cardiomyocytes under various experimental vibration modes (7, 21, and 56 sessions with a frequency of 8 and 44 Hz) confirmed the relationship between the provision of tissue with energy potential and morphological signs of pathological structural changes in the myocardial tissue, such as hypertrophy of cardiomyocytes, development of fibrosis, restructuring of the vascular bed, and necrosis.

CONCLUSION: Analysis of the relationship between energy metabolism and morphohistological transformation of heart tissue allows us to resolve the role of universal and specific mechanisms in cardiac remodeling in the presence of vibration and pathogenetically substantiate the choice of drugs that not only have a vibration-protective effect but also inhibit pathological structural changes in the myocardial tissue.

Full Text

Restricted Access

About the authors

Viktoriya V. Vorobieva

Saint Petersburg State University; Kirov Military Medical Academy

Email: v.v.vorobeva@mail.ru
ORCID iD: 0000-0001-6257-7129
SPIN-code: 2556-2770

MD, Dr. Sci. (Medicine), Senior Lecturer

Russian Federation, Saint Petersburg; Saint Petersburg

Ol’ga S. Levchenkova

Smolensk State Medical University

Email: novikov.farm@yandex.ru
ORCID iD: 0000-0002-9595-6982
SPIN-code: 2888-6150

MD, Dr. Sci. (Medicine)

Russian Federation, Smolensk

Karina V. Lenskaya

Saint Petersburg State University

Author for correspondence.
Email: karinavl@mail.ru
ORCID iD: 0000-0002-6407-0927

MD, Dr. Sci. (Biology), Professor

Russian Federation, Saint Petersburg

References

  1. Gorchakova TYu, Churanova AN. Current state of mortality of the working-age population in Russia and Europe. Russian Journal of Occupational Health and Industrial Ecology. 2020;60(11):756–759. EDN: EPVWTD doi: 10.31089/1026-9428-2020-60-11-756-759
  2. Tret’yakov SV, Shpagina LA. Prospects of studying structural and functional state of cardiovascular system in vibration disease patients with arterial hypertension. Russian Journal of Occupational Health and Industrial Ecology. 2017;(12):30–34. EDN: ZXHFIB
  3. Bokeriya LA, Bokeriya OL, Le TG. Myocardial electrophysiologic remodeling in heart failure and various heart diseases. Annals of arrhythmology. 2010;7(4):41–48. (In Russ.) EDN: NWFNTH
  4. Desai A. Rehospitalization for heart failure: predict or prevent? Circulation. 2012;126(4):501–506. doi: 10.1161/CIRCULATIONAHA.112.125435
  5. Korotenko OYu, Filimonov ES. Myocardial deformation and parameters of diastolic function of the left ventricle in workers of coal mining enterprises in the South of Kuzbass with arterial hypertension. Russian Journal of Occupational Health and Industrial Ecology. 2020;(3):151–156. EDN: VJOEKO doi: 10.31089/1026-9428-2020-60-3-151-156
  6. Vorobieva VV, Shabanov PD. Cellular mechanisms of hypoxia development in the tissues of experimental animals under varying characteristics of vibration exposure. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(3):59–70. EDN: QGQZKH doi: 10.17816/RCF17359-70
  7. Shpagina LA, Gerasimenko ON, Novikova II, et al. Clinical, functional and molecular characteristics of vibration disease in combination with arterial hypertension. Russian Journal of Occupational Health and Industrial Ecology. 2022;(3):146–158. EDN: CNLUQW doi: 10.31089/1026-9428-2022-62-3-146-158
  8. Sutton MGJ, Sharpe N. Left ventricular remodeling after myocardial infarction. Circulation. 2004;101(25):2981–2986. doi: 10.1161/01.cir.101.25.2981
  9. Vorobieva VV, Levchenkova OS, Shabanov PD. Blockade of rabbit cardiomyocyte calcium channels restores the activity of enzyme-substrate complexes of the respiratory chain in a model of vibration-mediated hypoxia. Journal biomed. 2022;18(4):63–73. EDN: TNVZAK doi: 10.33647/2074-5982-18-4-63-73
  10. Vorobieva VV, Shabanov PD. Vibration and vibroprotectors. In: Shabanov PD, editor. Pharmacology of extreme states: in 12 vol. Vol. 6. Saint Petersburg: Inform-Navigator Publ., 2015. 416 p. (In Russ.)
  11. Nicolls D. Bioenergetics. Introduction to chemiosmotic theory. Moscow: Mir Publ., 1985. 190 p. (In Russ.)
  12. Vorobieva VV, Shabanov PD. Tissue specific peculiarities of vibration-induced hypoxia of the rabbit heart, liver and kidney. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(1):46–62. EDN: VVEOGN doi: 10.17816/RCF14146-62
  13. Vorobieva VV, Shabanov PD. Exposure to whole body vibration impairs the functional activity of the energy producing system in rabbit myocardium. Biophysics. 2019;64(2):337–342. doi: 10.1134/2FS0006350919020210
  14. Vorobieva VV, Levchenkova OS, Shabanov PD. Activity of succinate dehydrogenase in rabbit blood lymphocytes depends on the characteristics of the vibration-based impact. Biophysics. 2022;67(2):267–273. doi: 10.1134/S0006350922020233
  15. Nelson DL, Cox MM. Lehninger principles of biochemistry: in 3 vol. Vol. 2: Bioenergetics and metabolism. Transl. from eng. NB Gusev. Moscow: BINOM. Laboratoriya znanii Publ., 2014. 636 p. (In Russ.)
  16. Atamantchuk AA, Kuzmina LP, Khotuleva AG, Kolyaskina MM. Polymorphism of genes of renin-angiotensin-aldosterone system in the development of hypertension in workers exposed to physical factors. Russian Journal of Occupational Health and Industrial Ecology. 2019;(12):972–977. EDN: RPZIZJ doi: 10.31089/1026-9428-2019-59-12-972-977
  17. Shpagina LA, Gerasimenko ON, Novikova II, et al. Clinical, functional and molecular characteristics of vibration disease in combination with arterial hypertension. Russian Journal of Occupational Health and Industrial Ecology. 2022;(3):146–158. EDN: CNLUQW doi: 10.31089/1026-9428-2022-62-3-146-158
  18. Melentev AV, Serebryakov PV, Zheglova AV. Influence of noise and vibration on nervous regulation of heart. Russian Journal of Occupational Health and Industrial Ecology. 2018;(9):19–23. EDN: YJGUST doi: 10.31089/1026-9428-2018-9-19-23
  19. Yamshchikova AV, Fleishman AN, Gidayatova MO, et al. Features of vegetative regulation in vibration disease patients, studied on basis of active orthostatic test. Russian Journal of Occupational Health and Industrial Ecology. 2018;(6):11–14. EDN: XQMXAL doi: 10.31089/1026-9428-2018-6-11-15
  20. Shpigel AS, Vakurova NV. Neurohumoral dysregulation in vibration disease (response features of hormonal complexes to the introduction of tyroliberin). Russian Journal of Occupational Health and Industrial Ecology. 2022;(1):29–35. EDN: DEGJGA doi: 10/31089/1026-9428-2022-62-129-35
  21. Tret’yakov SV, Shpagina LA, Vojtovich TV. On remodeling of heart under vibration disease. Russian Journal of Occupational Health and Industrial Ecology. 2002;(3):18–23. EDN: MPMTYH
  22. Malyutina NN, Bolotova AF, Eremeev RB, et al. Antioxidant status of blood in patients with vibration disease. Russian Journal of Occupational Health and Industrial Ecology. 2019;(12):978–982. EDN: ZPVTXP doi: 10.31089/1026-9428-2019-59-12-978-982
  23. Bogatyreva FM, Kaplunova VYu, Kozhevnikova MV, et al. Correlation between markers of fibrosis and myocardial remodeling in patients with various course of hypertrophic cardiomyopathy. Cardiovascular Therapy and Prevention. 2022;21(3):3140. EDN: EKFVOO doi: 10.15829/1728-8800-2022-3140
  24. Grigoriev AI, Tonevitsky AG. Molecular mechanisms of stress adaptation: immediate early genes. Russian journal of physiology. 2009;95(10):1041–1057. EDN: OIZSVD
  25. Braunwald E. Biomarkers in heart failure. New Engl J Med. 2008;358:2148–2159. doi: 10.1056/NEJMra0800239
  26. Vasin MV, Ushakov IB. Activation of respiratory chain complex II as a hypoxia tolerance indicator during acute hypoxia. Biophysics. 2018;63(2):329–333. doi: 10.1134/S0006350918020252
  27. Abramicheva PA, Andrianova NV, Babenko VA, et al. Mitochondrial network: electric cable and more. Biochemistry (Moscow). 2023;88(10):1926–1939. EDN: OVONXX doi: 10.31857/S0320972523100147
  28. Minkevich IG. The stoichiometry of metabolic pathways in the dynamics of cellular populations. Computer Research and Modeling. 2011;3(4):455–475. EDN: OPXYKN doi: 10.20537/2076-7633-2011-3-4-455-475
  29. Vorobieva VV, Shabanov РD. A change in the content of endogenous energy substrates in rabbit myocardium mitochondria depending upon frequency and duration of vibration. Biophysics. 2021;66(4):720–723. doi: 10.1134/S0006350921040229
  30. Kostjuk IF, Kapoustnik VA. Role of intracellular calcium metabolism in vasospasm formation during vibration disease. Russian Journal of Occupational Health and Industrial Ecology. 2004;(7):14–18. EDN: OWBNWR
  31. Vorobieva VV, Levchenkova OS, Shabanov PD. Biochemical mechanisms of the energy-protective action of blockers of slow high-threshold L-type calcium channels. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(4):395–405. EDN: YECCVH doi: 10.17816/RCF204395-405
  32. Dubinin MV, Starinets VS, Chelyadnikova YA, et al. Effect of the large-conductance calcium-dependent k+ channel activator NS1619 on the function of mitochondria in the heart of dystrophin-deficient mice. Biokhimiya. 2023;88(2):228–242. EDN: QFYBNW doi: 10.31857/S0320972523020045
  33. Kiryakov VA, Pavlovskaya NA, Lapko IV, et al. Impact of occupational vibration on molecular and cell level of human body. Russian Journal of Occupational Health and Industrial Ecology. 2018;(9):34–43. EDN: YJGVAD doi: 10.31089/1026-9428-2018-9-34-43
  34. Levchenkova OS, Novikov VE, Korneva YuS, et al. The combined preconditioning reduces the influence of cerebral ischemia on CNS morphofunctional condition. Bulletin of experimental biology and medicine. 2021;171(4):507–512. EDN: NAETUN doi: 10.47056/0365-9615-2021-171-4-507-512
  35. Nepomnyashchikh LM. Principal forms of acute damage to cardiomyocytes according to polarization microscopy data. Bulletin of experimental biology and medicine. 1996;121(1):4–13. EDN: WFMEKZ
  36. Bondarev OI, Bugaeva MS, Mikhailova NN. Pathomorphology of heart muscle vessels in workers of the main professions of the coal industry. Russian Journal of Occupational Health and Industrial Ecology. 2019;(6):335–341. EDN: GSSKJG doi: 10.31089/1026-9428-2019-59-6-335-341
  37. Chistova NP. The role of candidate gene polymorphisms for endothelial dysfunction and metabolic disorders in the development of cardiovascular diseases under the influence of production factors. Russian Journal of Occupational Health and Industrial Ecology. 2022;62(5):331–336. EDN: JDNIWU doi: 10.31089/1026-9428-2022-62-5-331-336
  38. Mykhaylichenko VYu, Samarin SA, Tyukavin AI, Zaharov EA. Comparative assessment of the effect of mesenchymal stem cells and growth factors on angiogenesis and the pumping function of the heart in rats after a myocardial infarction. Russian biomedical research. 2019;4(2):8–17. EDN: PZSCYX
  39. Vorobieva VV, Shabanov PD. Morphological changes in the myocardium, liver and kidneys of rabbits after exposure of general vibration and pharmacological defense with succinate. Morphological newsletter. 2011;(1):16–20. EDN: NMZIUV
  40. Lou Q, Janardhan A, Efimov IR. Remodeling of calcium handling in human heart failure. In: Islam M., editor. Calcium signaling. Advances in experimental medicine and biology. Vol. 740. Springer, Dordrecht. Р. 1145–1174. doi: 10.1007/978-94-007-2888-2_52
  41. Gerdes AM. Cardiac myocyte remodeling in hypertrophy and progression to failure. J Card Fail. 2002;8(6):264–268. doi: 10.1054/jcaf.2002.129280
  42. Wu Q-Q, Xiao Y, Yuan Y, et al. Mechanisms contributing to cardiac remodeling. Clin Sci (Lond). 2017;131(18):2319–2345. doi: 10.1042/CS201711676
  43. Shram SI, Shcherbakova TA, Abramova TV, et al. Natural guanine derivatives exert parp-inhibitory and cytoprotective effects in a model of cardiomyocyte damage under oxidative stress. Biochemistry (Moscow). 2023;88(6):962–972. EDN: EFCJHN doi: 10.31857/S0320972523060064

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 84654 от 01.02.2023 г

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies