Pharmacological neuroprotection in cerebrovascular insufficiency: Possible approaches

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This review analyzed the literature data and results of our research on the experimental and clinical studies of the possibilities of pharmacological neuroprotection in ischemic brain lesions. Neuroprotection is one of the strategic directions of specific pharmacotherapy for cerebrovascular insufficiency. Different approaches to pharmacological neuroprotection are possible, considering the main pathogenetic pathways of the ischemic cascade and physiological mechanisms of neuroprotection. Pharmacological neuroprotection can be achieved by blocking the pathogenetic links of the ischemic cascade (primarily glutamate excitotoxicity and oxidant stress) and inducing physiological processes associated with neuroplasticity and neurotrophy. The issues related to the use of various pharmacotherapeutic groups for primary and secondary neuroprotection are discussed. The optimal choice of pathogenetic and physiological targets for primary and secondary pharmacological neuroprotection is an important component in the development of pharmacotherapy strategies for ischemic brain lesions because it consistently increases the resistance of brain cells to ischemia/hypoxia and stimulates reparative recovery processes in the central nervous system. Rationally selected pathways and drugs for pharmacological neuroprotection determine their effectiveness in ischemic brain lesions.

Full Text

Restricted Access

About the authors

Vasiliy E. Novikov

Smolensk State Medical University

Email: nau@sgmu.info
ORCID iD: 0000-0002-0953-7993
SPIN-code: 1685-1028

MD, Dr. Sci. (Medicine), professor

Russian Federation, Smolensk

Elena V. Pozhilova

Smolensk State Medical University

Author for correspondence.
Email: pozh2008@yandex.ru
ORCID iD: 0000-0002-7372-7329
SPIN-code: 6371-6930

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Smolensk

References

  1. Belskaya GN. Modern neuroprotection in the treatment of patients with cerebrovascular diseases. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(10):117–122. (In Russ.) EDN: SIQGGT doi: 10.17116/jnevro2021121101117
  2. Mirzoyan RS, Ganshina TS. Pharmacology of cerebrovascular diseases and migraine. Moscow: Tretiakov; 2022. 370 p. (In Russ.)
  3. Novikov VE, Levchenkova OS, Ivantsova EN, Vorobieva VV. Mitochondrial dysfunctions and antihypoxants. Reviews on clinical pharmacology and drug therapy. 2019;17(4):31–42. (In Russ.) EDN: SHCYZM doi: 10.17816/RCF17431-42
  4. Levchenkova OS, Kulagin KN, Novikov VE. Cerebroprotective action of pharmacological and hypoxic preconditioning in brain ischemia. Vestnik of the Smolensk State Medical Academy. 2017;16(2):15–21. (In Russ.) EDN: YPCMXX
  5. Levchenkova OS, Novikov VE, Kulagin KN, Ponamareva NS. Influence of combined pharmacological and hypoxic preconditioning on animal survival and functional activity of CNS during model cerebral ischemia. Experimental and clinical pharmacology. 2016;79(6):3–8. (In Russ.) EDN: WCOGFF doi: 10.30906/0869-2092-2016-79-6-3-8
  6. Levchenkova OS, Novikov VE, Pogilova EV. Mitochondrial pore as a pharmacological target. Vestnik of the Smolensk State Medical Academy. 2014;13(4):24–33. EDN: TNHKBT
  7. Novikov VE, Levchenkova OS. Perspectives of use of inducers of the hypoxia adaptation factor in therapy of ischemic diseases. Journal of Ural Medical Academic Science. 2014;(5):132–138. EDN: TKZNBL
  8. Yenari M, Kitagawa K, Lyden P, Perez-Pinzon M. Metabolic suppression is the key to successful neuroprotection. Stroke. 2008;(6). Available from: http://stroke-journal.ru (In Russ.)
  9. Levchenkova OS, Novikov VE. Possibilities of pharmacological preconditioning. Annals of the Russian Academy of Medical Sciences. 2016;71(1):16–24. (In Russ.) EDN: VPLXBD doi: 10.15690/vramn626
  10. Novikov VE, Levchenkova OS, Pogilova EV. Pharmacological preconditioning: opportunities and prospects. Vestnik of the Smolensk State Medical Academy. 2020;19(2):36–49. (In Russ.) EDN: OMTYRF doi: 10.37903/vsgma.2020:2.6
  11. Duma SN. Evaluation of clinical effectiveness of gaba-ergic neuroprotectors in the treatment of cognitive disorders in patients with dyscirculatory encephalopathy I-II stage. Farmateka. 2010;(13):119–123. (In Russ.) EDN: MWCMLP
  12. Levchenkova OS, Novikov VE. Antihypoxants: possible mechanisms of action and their clinical uses. Vestnik of the Smolensk State Medical Academy. 2011;10(4):43–57. (In Russ.) EDN: PBSYIX
  13. Levchenkova OS, Novikov VE. Inducers of the regulatory factor to hypoxia adaptation. I.P. Pavlov Russian medical biological herald. 2014;22(2):133–143. (In Russ.) EDN: SIVUYD
  14. Shabanov PD, Zarubina IV, Novikov VE, Tsygan VN. Pharmacological correctors of hypoxia. Belevitin AB, editor. Saint Petersburg: N-L, 2010. 912 p. (In Russ.)
  15. Namura S, Ooboshi H, Liu J, et al. Neuroprotection after cerebral ischemia. Ann NY Acad Sci. 2013;1278(1):25–32. doi: 10.1111/nyas.12087
  16. Loktin EM, Kokhno VN, Shmakov AN, et al. Neuroprotective treatment of acute stroke. The efficacy of Cellex application. Nervous diseases. 2023;(1):60–65. (In Russ.) EDN: VHAFBV doi: 10.24412/2226-0757-2023-12846
  17. Novikov VE, Levchenkova OS. Erythropoietin and vascular endothelial growth factor level in normoxia and in cerebral ischemia under pharmacological and hypoxic preconditioning. Biomeditsinskaya khimiya. 2020;66(4):339–344. (In Russ.) EDN: XDXCGU doi: 10.18097/PBMC20206604339
  18. Marmolejo-Martínez-Artesero S, Casas C, Romeo-Guitart D. Endogenous mechanisms of neuroprotection: To boost or not to boost. Cells. 2021;10(2):370. doi: 10.3390/cells10020370
  19. Sergeyev DV, Piradov MA. Neuroprotection – a strategic direction in the treatment of ischemic stroke. RMJ. 2010;18(8):441–445. (In Russ.) EDN: PIQBVD (In Russ.)
  20. Sergeev DV, Domashenko MA, Piradov MA. Pharmacological neuroprotection in stroke in clinical practice: new perspectives. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(4):86–91. (In Russ.) EDN: YQQMKB doi: 10.17116/jnevro20171174186-91
  21. Ford GA. Clinical pharmacological issues in the development of acute stroke therapies. Br J Clin Pharmacol. 2008;153(S1):112–119. doi: 10.1038/sj.bjp.0707654
  22. Novikov VE, Levchenkova OS, Pogilova EV. Role of mitochondrial ATP-dependent potassium channel and its modulators in cell adaptation to hypoxia. Vestnik of the Smolensk State Medical Academy. 2014;13(2):48–54. (In Russ.) EDN: SXSRQH
  23. Novikov VE, Levchenkova OS, Pogilova EV. Mitochondrial nitric oxide synthase and its role in the mechanisms of cell adaptation to hypoxia. Reviews on clinical pharmacology and drug therapy. 2016;14(2):38–46. (In Russ.) EDN: WFETDV doi: 10.17816/RCF14238-46
  24. Pogilova EV, Novikov VE. Physiological and pathological value of cellular synthase of nitrogen oxide and endogenous nitrogen oxide. Vestnik of the Smolensk State medical academy. 2015;14(4):35–41. (In Russ.) EDN: VNVYFZ
  25. Grupke S, Hall J, Dobbs M, et al. Understanding history, and not repeating it. Neuroprotection for acute ischemic stroke: From review to preview. Clin Neurol Neurosurg. 2015;129:1–9. doi: 10.1016/j.clineuro.2014.11.013
  26. Novikov VE, Levchenkova OS, Pogilova EV. Mitochondrial nitric oxide synthase in mechanisms of cell adaptation and its pharmacological regulation. Vestnik of the Smolensk State Medical Academy. 2016;15(1):14–22. (In Russ.) EDN: VVVMDB
  27. Ginsberg MD. Expanding the concept of neuroprotection for acute ischemic stroke: The pivotal roles of reperfusion and the collateral circulation. Progr Neurobiol. 2016;145-146:46–77. doi: 10.1016/j.pneurobio.2016.09.002
  28. Klipa TYaV, Eremenko AA, Shepelyuk AN, Antonov IO. Pharmacological neuroprotection in cardiosurgery (part I): drugs for general anesthesia. Russian Journal of Anesthesiology and Reanimatology. 2015;60(4):43–49. (In Russ.) EDN: UBYSXN
  29. Novikov VE, Levchenkova OS. Mitochondrial targets for pharmacological regulation of cell adaptation to hypoxia. Reviews on clinical pharmacology and drug therapy. 2014;12(2):28–35. (In Russ.) EDN: SNYXNN
  30. Novikov VE, Ponamareva NS, Pogilova EV. Aquaporins in the physiology and pathology of the central nervous system and prospects for their use as pharmacological targets. Vestnik of the Smolensk State medical academy. 2022;21(3):49–61. (In Russ.) EDN: CBDCNC doi: 10.37903/vsgma.2022.3.6
  31. Pogilova EV, Novikov VE, Levchenkova OS. Reactive oxygen species in cell physiology and pathology. Vestnik of the Smolensk State medical academy. 2015;14(2):13–22. (In Russ.) EDN: UHOVFR
  32. Levchenkova OS, Novikov VE, Parfenov EA, Kulagin KN. Neuroprotective effect of antioxidants and moderate hypoxia as combined preconditioning in cerebral ischemia. Bulletin of Experimental Biology and Medicine. 2016;162(8):173–177. (In Russ.) EDN: WHHGMP
  33. Novikov VE, Levchenkova OS, Klimkina EI, Kulagin KN. Potentiation of the hypoxic preconditioning effect by antihypoxants. Reviews on clinical pharmacology and drug therapy. 2019;17(1):37–44. (In Russ.) EDN: PHNAKT doi: 10.7816/RCF17137-44
  34. Novikov VE, Maslova NN. The effect of mexidol on the course of posttraumatic epilepsy treatment. Experimental and clinical pharmacology. 2003;66(4):9–11. (In Russ.) EDN: SVZUBT
  35. Novikov VE, Ponamareva NS, Shabanov PD. Aminothiol antihypoxants in traumatic cerebral edema. Saint Petersburg: Ehlbi-SPb; 2008. 176 p. (In Russ.)
  36. Novikov VE. Potentialities of pharmacological neuroprotection in traumatic brain injury. Psychopharmacology and biological narcology. 2007;7(2):1500–1509. (In Russ.) EDN: HZUPNJ
  37. Sergeyev DV. Neuroprotection in ischemic stroke: are hopes justified. RMJ. 2010;18(26):1521–1526. (In Russ.) EDN: PYFFFF
  38. Ginsberg MD. Current status of neuroprotection for cerebral ischemia: synoptic overwiev. Stroke. 2009;40;(3S1):111–114. doi: 10.1161/STROKEAHA.108.528877
  39. Pogilova EV, Novikov VE. Pharmacodynamics and clinical application of ACTH4-10 neuropeptide. Vestnik of the Smolensk State Medical Academy. 2020;19(3):76–86. (In Russ.) EDN: IUZEXY doi: 10.37903/vsgma.2020.3.10
  40. Ponamareva NS, Novikov VE, Pogilova EV. Prospects of pharmacological regulation of aquaporin function in CNS diseases. Reviews on clinical pharmacology and drug therapy. 2023;21(1):35–48. (In Russ.) EDN: UNKYAO doi: 10.17816/RCF21135-48
  41. Novikov VE, Kovaleva LA. The effect of agents with nootropic activity on oxidative phosphorylation in brain mitochondria in acute craniocerebral trauma. Experimental and clinical pharmacology. 1997;60(1):59–61. (In Russ.) EDN: MOXYUL
  42. Novikov VE, Kovaleva LA. The effect of nootropics on the function of brain mitochondria during the course of craniocerebral trauma in the age aspect. Experimental and clinical pharmacology. 1998;61(2):65–68. (In Russ.) EDN: MPBBTV
  43. Novikov VE, Levchenkova OS, Ivantsova EN. Possibilities of antihypoxant use for mitochondrial dysfunctions. Vestnik of the Smolensk State Medical Academy. 2020;19(1):41–55. (In Russ.) EDN: TMVTOL
  44. Novikov VE, Sharov AN. Effect of GABAergic agents on oxidative phosphorylation in brain mitochondria in traumatic brain edema. Pharmacology and Toxicology. 1991;54(6):44–46. (In Russ.)
  45. Bodhankar S, Chen Y, Vandenbark AA, et al. IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metab Brain Dis. 2013;28(3):375–386. doi: 10.1007/s11011-013-9413-3

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 84654 от 01.02.2023 г

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies