Placental causes of fetal growth restriction and treatment methods

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Intrauterine growth restriction (IUGR) is one of the most common pregnancy complications and a leading cause of iatrogenic preterm birth.

AIM: To examine the potential causes of fetal growth restriction and available treatment options, based on a comprehensive literature review from the past decade utilizing search databases such as PubMed and Elibrary.

The most common etiology of intrauterine growth restriction is abnormal placentation, frequently associated with impaired placental blood flow. Fetuses with growth restriction and significant abnormalities in umbilical artery blood flow are at increased risk of adverse outcomes, including intrauterine fetal demise, neonatal death, and neonatal morbidity such as hypoglycemia, hyperbilirubinemia, hypothermia, intraventricular hemorrhage, necrotizing enterocolitis, and seizure syndrome. Additionally, epidemiological studies indicate that fetuses with IUGR are predisposed to cognitive delays during childhood and conditions such as obesity, type 2 diabetes, and ischemic heart disease in adulthood. Various pharmacological interventions are being explored as potential adjuncts to improve fetal outcomes.

Full Text

Restricted Access

About the authors

Alexandra A. Blazhenko

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: alexandrablazhenko@gmail.com
ORCID iD: 0000-0002-8079-0991
SPIN-code: 8762-3604

MD, Cand. Sci. (Medicine)

Russian Federation, 199034, Saint Petersburg, Mendeleyevskaya Liniya, 3

Olga V. Pachuliya

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: opachuliya@mail.ru
ORCID iD: 0000-0003-4116-0222
SPIN-code: 1204-3160

MD, Cand. Sci. (Medicine)

Russian Federation, 199034, Saint Petersburg, Mendeleyevskaya Liniya, 3

Olesya N. Bespalova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: shiggerra@mail.ru
ORCID iD: 0000-0002-6542-5953
SPIN-code: 4732-8089

MD, Dr. Sci. (Medicine)

Russian Federation, 199034, Saint Petersburg, Mendeleyevskaya Liniya, 3

Igor Yu. Kogan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450

corresponding member of the Russian Academy of Sciences, MD, Dr. Sci. (Medicine), professor

Russian Federation, 199034, Saint Petersburg, Mendeleyevskaya Liniya, 3

References

  1. Burton GJ, Fowden AL, Thornburg KL. Placental origins of chronic disease. Physiol Rev. 2016;96(4):1509–1565. doi: 10.1152/physrev.00029.2015
  2. Burkhardt T, Schäffer L, Schneider C, et al. Reference values for the weight of freshly delivered term placentas and for placental weight-birth weight ratios. Eur J Obstet Gynecol Reprod Biol. 2006;128(1-2):248–252. doi: 10.1016/j.ejogrb.2005.10.032
  3. Resnik R. Intrauterine growth restriction. Obstet Gynecol. 2002;99(3):490–496. doi: 10.1016/s0029-7844(01)01780-x
  4. Jauniaux E, Jurkovic D, Campbell S, et al. Investigation of placental circulations by color Doppler ultrasonography. Am J Obstet Gynecol. 1991;164(2):486–488. doi: 10.1016/s0002-9378(11)80005-0
  5. Gruenwald P. Abnormalities of placental vascularity in relation to intrauterine deprivation and retardation of fetal growth. Significance of avascular chorionic villi. N Y State J Med. 1961;61:1508–1513.
  6. Jauniaux E, Jurkovic D, Campbell S, Hustin J. Doppler ultrasonographic features of the developing placental circulation: Correlation with anatomic findings. Am J Obstet Gynecol. 1992;166(2):585–587. doi: 10.1016/0002-9378(92)91678-4
  7. Sebire NJ. Implications of placental pathology for disease mechanisms; methods, issues and future approaches. Placenta. 2017;52:122–126. doi: 10.1016/j.placenta.2016.05.006
  8. Velauthar L, Plana MN, Kalidindi M, et al. First-trimester uterine artery Doppler and adverse pregnancy outcome: a meta-analysis involving 55,974 women. Ultrasound Obstet Gynecol. 2014;43(5):500–507. doi: 10.1002/uog.13275
  9. Fleischer A, Schulman H, Farmakides G, et al. Uterine artery Doppler velocimetry in pregnant women with hypertension. Am J Obstet Gynecol. 1986;154(4):806–813. doi: 10.1016/0002-9378(86)90462-x
  10. Jauniaux E, Poston L, Burton GJ. Placental-related diseases of pregnancy: Involvement of oxidative stress and implications in human evolution. Hum Reprod Update. 2006;12(6):747–755. doi: 10.1093/humupd/dml016
  11. Alfirevic Z, Stampalija T, Dowswell T. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev. 2017;6(6):CD007529. doi: 10.1002/14651858.CD007529.pub4
  12. Luria O, Barnea O, Shalev J, et al. Two-dimensional and three-dimensional Doppler assessment of fetal growth restriction with different severity and onset. Prenat Diagn. 2012;32(12):1174–1180. doi: 10.1002/pd.3980
  13. Burton GJ, Jauniaux E, Charnock-Jones DS. Human early placental development: potential roles of the endometrial glands. Placenta. 2007;28(Suppl A):S64–S69. doi: 10.1016/j.placenta.2007.01.007
  14. Burton GJ, Jauniaux E. The cytotrophoblastic shell and complications of pregnancy. Placenta. 2017;60:134–139. doi: 10.1016/j.placenta.2017.06.007
  15. Maruo T, Matsuo H, Murata K, Mochizuki M. Gestational age-dependent dual action of epidermal growth factor on human placenta early in gestation. J Clin Endocrinol Metab. 1992;75(5):1362–1367. doi: 10.1210/jcem.75.5.1430098
  16. Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. 1992;80(2):283–285.
  17. Hustin J, Schaaps JP. Echographic and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol. 1987;157(1):162–168. doi: 10.1016/s0002-9378(87)80371-x
  18. Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27(9-10):939–958. doi: 10.1016/j.placenta.2005.12.006
  19. Burton GJ, Scioscia M, Rademacher TW. Endometrial secretions: creating a stimulatory microenvironment within the human early placenta and implications for the aetiopathogenesis of preeclampsia. J Reprod Immunol. 2011;89(2):118–125. doi: 10.1016/j.jri.2011.02.005
  20. Harris LK. Review: Trophoblast-vascular cell interactions in early pregnancy: how to remodel a vessel. Placenta. 2010;31:S93–S98. doi: 10.1016/j.placenta.2009.12.012
  21. Whitley GS, Cartwright JE. Cellular and molecular regulation of spiral artery remodelling: lessons from the cardiovascular field. Placenta. 2010;31(6):465–474. doi: 10.1016/j.placenta.2010.03.002
  22. Moffett A, Hiby SE, Sharkey AM. The role of the maternal immune system in the regulation of human birthweight. Philos Trans R Soc Lond B Biol Sci. 2015;370(1663):20140071. doi: 10.1098/rstb.2014.0071
  23. Khong TY, De Wolf F, Robertson WB, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol. 1986;93(10):1049–1059. doi: 10.1111/j.1471-0528.1986.tb07830.x
  24. Burchell RC. Arterial blood flow into the human intervillous space. Am J Obstet Gynecol. 1967;98(3):303–311. doi: 10.1016/0002-9378(67)90149-4
  25. Mayhew TM, Jackson MR, Boyd PA. Changes in oxygen diffusive conductances of human placentae during gestation (10-41 weeks) are commensurate with the gain in fetal weight. Placenta. 1993;14(1):51–61. doi: 10.1016/s0143-4004(05)80248-6
  26. Burton GJ, Jauniaux E, Charnock-Jones DS. The influence of the intrauterine environment on human placental development. Int J Dev Biol. 2010;54(2-3):303–312. doi: 10.1387/ijdb.082764gb
  27. Jauniaux E, Hempstock J, Greenwold N, Burton GJ. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol. 2003;162(1):115–125. doi: 10.1016/S0002-9440(10)63803-5
  28. Gruenwald P. Expansion of placental site and maternal blood supply of primate placentas. Anat Rec. 1972;173(2):189–203. doi: 10.1002/ar.1091730208
  29. Lyall F, Robson SC, Bulmer JN. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension. 2013;62(6):1046–1054. doi: 10.1161/HYPERTENSIONAHA.113.01892
  30. Salafia CM, Yampolsky M, Misra DP, et al. Placental surface shape, function, and effects of maternal and fetal vascular pathology. Placenta. 2010;31(11):958–962. doi: 10.1016/j.placenta.2010.09.005
  31. Salafia CM, Yampolsky M, Shlakhter A, et al. Variety in placental shape: when does it originate? Placenta. 2012;33(3):164–170. doi: 10.1016/j.placenta.2011.12.002
  32. Salafia CM, Zhang J, Miller RK, et al. Placental growth patterns affect birth weight for given placental weight. Birth Defects Res A Clin Mol Teratol. 2007;79(4):281–288. doi: 10.1002/bdra.20345
  33. Yampolsky M, Salafia CM, Shlakhter O, et al. Centrality of the umbilical cord insertion in a human placenta influences the placental efficiency. Placenta. 2009;30(12):1058–1064. doi: 10.1016/j.placenta.2009.10.001
  34. Schwartz N, Quant HS, Sammel MD, Parry S. Macrosomia has its roots in early placental development. Placenta. 2014;35(9):684–690. doi: 10.1016/j.placenta.2014.06.373
  35. Ong SS, Baker PN, Mayhew TM, Dunn WR. Remodeling of myometrial radial arteries in preeclampsia. Am J Obstet Gynecol. 2005;192(2):572–579. doi: 10.1016/j.ajog.2004.08.015
  36. Brosens I, Dixon HG, Robertson WB. Fetal growth retardation and the arteries of the placental bed. Br J Obstet Gynaecol. 1977;84(9):656–663. doi: 10.1111/j.1471-0528.1977.tb12676.x
  37. Gerretsen G, Huisjes HJ, Elema JD. Morphological changes of the spiral arteries in the placental bed in relation to pre-eclampsia and fetal growth retardation. Br J Obstet Gynaecol. 1981;88(9):876–881. doi: 10.1111/j.1471-0528.1981.tb02222.x
  38. Burton GJ, Watson AL, Hempstock J, et al. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87(6):2954–2959. doi: 10.1210/jcem.87.6.8563
  39. Pijnenborg R, Bland JM, Robertson WB, et al. The pattern of interstitial trophoblastic invasion of the myometrium in early human pregnancy. Placenta. 1981;2(4):303–316. doi: 10.1016/s0143-4004(81)80027-6
  40. Filant J, Spencer TE. Uterine glands: biological roles in conceptus implantation, uterine receptivity and decidualization. Int J Dev Biol. 2014;58(2-4):107–116. doi: 10.1387/ijdb.130344ts
  41. Burton GJ, Woods AW, Jauniaux E, Kingdom JC. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30(6):473–482. doi: 10.1016/j.placenta.2009.02.009
  42. Aardema MW, Oosterhof H, Timmer A, et al. Uterine artery Doppler flow and uteroplacental vascular pathology in normal pregnancies and pregnancies complicated by pre-eclampsia and small for gestational age fetuses. Placenta. 2001;22(5):405–411. doi: 10.1053/plac.2001.0676
  43. Zhu MY, Milligan N, Keating S, et al. The hemodynamics of late-onset intrauterine growth restriction by MRI. Am J Obstet Gynecol. 2016;214(3):367.e1–367.e17. doi: 10.1016/j.ajog.2015.10.004
  44. Burton GJ, Jauniaux E, Watson AL. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol. 1999;181(3):718–724. doi: 10.1016/s0002-9378(99)70518-1
  45. Falco ML, Sivanathan J, Laoreti A, et al. Placental histopathology associated with pre-eclampsia: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;50(3):295–301. doi: 10.1002/uog.17494
  46. Moran MC, Mulcahy C, Zombori G, et al. Placental volume, vasculature and calcification in pregnancies complicated by pre-eclampsia and intra-uterine growth restriction. Eur J Obstet Gynecol Reprod Biol. 2015;195:12–17. doi: 10.1016/j.ejogrb.2015.07.023
  47. Jauniaux E, Watson A, Ozturk O, et al. In-vivo measurement of intrauterine gases and acid-base values early in human pregnancy. Hum Reprod. 1999;14(11):2901–2904. doi: 10.1093/humrep/14.11.2901
  48. Cindrova-Davies T, van Patot MT, Gardner L, et al. Energy status and HIF signalling in chorionic villi show no evidence of hypoxic stress during human early placental development. Mol Hum Reprod. 2015;21(3):296–308. doi: 10.1093/molehr/gau105
  49. Jauniaux E, Watson AL, Hempstock J, et al. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol. 2000;157(6):2111–2122. doi: 10.1016/S0002-9440(10)64849-3
  50. van Uitert EM, Exalto N, Burton GJ, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753–1761. doi: 10.1093/humrep/det115
  51. Barker DJ, Thornburg KL. The obstetric origins of health for a lifetime. Clin Obstet Gynecol. 2013;56(3):511–519. doi: 10.1097/GRF.0b013e31829cb9ca
  52. Brosens I, Pijnenborg R, Vercruysse L, Romero R. The «Great Obstetrical Syndromes» are associated with disorders of deep placentation. Am J Obstet Gynecol. 2011;204(3):193–201. doi: 10.1016/j.ajog.2010.08.009
  53. Jaddoe VW, de Jonge LL, Hofman A, et al. First trimester fetal growth restriction and cardiovascular risk factors in school age children: population based cohort study. BMJ. 2014;348:g14. doi: 10.1136/bmj.g14
  54. Collins SL, Birks JS, Stevenson GN, et al. Measurement of spiral artery jets: general principles and differences observed in small-for-gestational-age pregnancies. Ultrasound Obstet Gynecol. 2012;40(2):171–178. doi: 10.1002/uog.10149
  55. Bruin C, Damhuis S, Gordijn S, Ganzevoort W. Evaluation and Management of Suspected Fetal Growth Restriction. Obstet Gynecol Clin North Am. 2021;48(2):371–385. doi: 10.1016/j.ogc.2021.02.007
  56. Terstappen F, Spradley FT, Bakrania BA, et al. Prenatal sildenafil therapy improves cardiovascular function in fetal growth restricted offspring of dahl salt-sensitive rats. Hypertension. 2019;73(5):1120–1127. doi: 10.1161/HYPERTENSIONAHA.118.12454
  57. Zhang H, Liu X, Zheng Y, et al. Dietary N-carbamylglutamate or L-arginine improves fetal intestinal amino acid profiles during intrauterine growth restriction in undernourished ewes. Anim Nutr. 2022;8(1):341–349. doi: 10.1016/j.aninu.2021.12.001
  58. Tchirikov M, Steetskamp J, Hohmann M, Koelbl H. Long-term amnioinfusion through a subcutaneously implanted amniotic fluid replacement port system for treatment of PPROM in humans. Eur J Obstet Gynecol Reprod Biol. 2010;152(1):30–33. doi: 10.1016/j.ejogrb.2010.04.023

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Possible interventions for the treatment of IUGR by site of action affecting vascular smooth muscle and endothelial metabolism. GMP — guanosine monophosphate; cGMP — cyclic guanosine monophosphate; GTP — guanosine triphosphate; HO-1 — heme oxygenase-1; NO — nitric oxide; NOS — nitric oxide synthase; PDE5 — phosphodiesterase type 5 inhibitor; sGC — soluble guanylate cyclase; TX-A2 — thromboxane A2 [55]

Download (1012KB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 84654 от 01.02.2023 г