Prospects of pharmacological regulation of physiological adaptation mechanisms in cerebrovascular insufficiency

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In cerebrovascular insufficiency, neuroprotective pharmacotherapy is usually carried out in 2 strategic directions: blockade of pathophysiological reactions of ischemic cascades and increase in the tolerance of brain neurons to ischemia/hypoxia. This approach to pharmacotherapy of patients with ischemic brain damage is the key to effective neuroprotection. Pharmacological blockade of ischemia-induced pathophysiological reactions is achieved by using drugs that affect pathogenetic targets in the dynamics of the ischemic process, which allows blocking the development of neurotoxic effects and reducing the likelihood of functional and structural changes in neurons. The work discusses the prospects for pharmacotherapy of cerebrovascular insufficiency through activation of endogenous adaptation mechanisms. The author’s own research and other sources data on the efficacy and safety of various pharmacotherapeutic agents are analyzed. The neuroprotective effects of these agents are based on activating physiological mechanisms of cellular adaptation to ischemia/hypoxia. A pharmacotherapeutic rationale is given for selecting and evaluating the pharmacodynamics of agents aimed at stimulating physiological mechanisms of neuroprotection (including neurotrophic and neuroplasticity processes). Neuroprotective pharmacotherapy for both acute cerebrovascular accidents and chronic cerebrovascular insufficiency should be combined and aimed not only at blocking pathological reactions of the ischemic cascade but also at activating endogenous adaptation mechanisms. The selection of pharmacological agents for implementing pharmacological neuroprotection by activating physiological adaptation mechanisms depends on the neuroprotection period and the intended pharmacological targets.

Full Text

Restricted Access

About the authors

Vasiliy E. Novikov

Smolensk State Medical University

Author for correspondence.
Email: farmfpk@smolgmu.ru
ORCID iD: 0000-0002-0953-7993
SPIN-code: 1685-1028

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Smolensk

Elena V. Pozhilova

Smolensk State Medical University

Email: elena-pozh2008@yandex.ru
ORCID iD: 0000-0002-7372-7329
SPIN-code: 6371-6930

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Smolensk

Natalia E. Usacheva

Smolensk State Medical University

Email: farmfpk@smolgmu.ru
ORCID iD: 0000-0002-4416-4344
SPIN-code: 1512-1336

Cand. Sci. (Pharmacology), Assistant Professor

Russian Federation, Smolensk

Ksenia D. Zagnet

Smolensk State Medical University

Email: farmfpk@smolgmu.ru
ORCID iD: 0000-0003-0761-7129
SPIN-code: 9179-0791

Assistant

Russian Federation, Smolensk

References

  1. Novikov VE, Pozhilova EV. Pharmacological neuroprotection in cerebrovascular insufficiency: possible approaches. Psychopharmacology and Biological Narcology. 2024;15(1):23–32. EDN: ZZEGEE doi: 10.17816/phbn626125
  2. Novikov VE, Pozhilova EV. Pharmacological neuroprotection in ischemic brain lesions (Part 2. Possible approaches to pharmacological neuroprotection). Vestnik of the Smolensk State Medical Academy. 2024;23(2):54–64. EDN: CLCRVT doi: 10.37903/vsgma.2024.2.6
  3. Novikov VE, Pozhilova EV. Pharmacological neuroprotection in ischemic brain lesions (Part 3. Justification of the choice and pharmacodynamics of drugs for blockade of ischemic cascades). Vestnik of the Smolensk State Medical Academy. 2024;23(3):47–60. EDN: DZGXGB doi: 10.37903/vsgma.2024.3.6
  4. Novikov VE. Pharmacological neuroprotection in ischemic brain lesions (Part 1. Physiological and pathogenetic targets for pharmacological neuroprotection). Vestnik of the Smolensk State Medical Academy. 2024;23(1):35–47. EDN: GSQPVA doi: 10.37903/vsgma.2024.1.5
  5. Novikov VE, Levchenkova OS, Pozhilova EV. Mitochondrial nitric oxide synthase and its role in the mechanisms of cell adaptation to hypoxia. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(2):38–46. EDN: WFETDV doi: 10.17816/RCF14238-46
  6. Pozhilova EV, Novikov VE, Levchenkova OS. Mitochondrial ATP-dependent potassium channel and its pharmacological modulators. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(1):29–36. EDN: VVEOFT doi: 10.17816/RCF14129-36
  7. Ponamareva NS, Novikov VE, Pozhilova EV. Prospects of pharmacological regulation of aquaporin function in CNS diseases. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(1):35–48. EDN: UNRYAO doi: 10.17816/RCF21135-48
  8. Levchenkova OS, Novikov VE. Inducers of the regulatory factor of hypoxia adaptation. I.P. Pavlov Russian Medical Biological Herald. 2014;(2):133–143. EDN: SIVUYD
  9. Novikov VE, Levchenkova OS. Perspectives of use of inducers of the hypoxia adaptation factor in therapy of ischemic diseases. Bulletin of the Ural Medical Academic Science. 2014;51(5):132–138. EDN: TKZNBL
  10. Novikov VE, Levchenkova OS. Erythropoietin and vascular endothelial growth factor level in normoxia and in cerebral ischemia under pharmacological and hypoxic preconditioning. Biomedical Chemistry. 2020;66(4):339–344. EDN: XDXCGU doi: 10.18097/PBMC20206604339
  11. Novikov VE, Ponamareva NS, Pozhilova EV. Aquaporins in the physiology and pathology of the central nervous system and prospects for their use as pharmacological targets. Vestnik of the Smolensk State Medical Academy. 2022;21(3):49–61. EDN: CBDCNC doi: 10.37903/vsgma.2022.3.6
  12. Pozhilova EV, Novikov VE. Pharmacodynamics and clinical application of ACTH4-10 neuropeptide. Vestnik of the Smolensk State Medical Academy. 2020;19(3):76–86. EDN: IUZEXY doi: 10.37903/vsgma.2020.3.10
  13. Shabanov PD, Zarubina IV, Novikov VE, et al.; Belevitin AB, editor. Pharmacological correctors of hypoxia. Saint Petersburg: Inform-Navigator; 2010. 911 p. (In Russ.) EDN: QLYCVF
  14. Belskaya GN. Modern neuroprotection in the complex treatment of patients with cerebrovascular diseases. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(10):117–122. EDN: SIQGGT doi: 10.17116/jnevro2021121101117
  15. Kоzakov AYu, Chugunov AV, Umarova HYa. Neuropeptides as metabolic agents in cerebrovascular disease. Doctor.Ru. 2013;83(5):12–17. EDN: RDFSAL
  16. Loktin EM, Kohno VN, Shmakov AN, et al. Neuroprotective treatment of acute stroke. The efficacy of cellex application. Nervous diseases. 2023;(1):60–65. EDN: VHAFBV doi: 10.24412/2226-0757-2023-12846
  17. Marmolejo-Martínez-Artesero S, Casas C, Romeo-Guitart D. Endogenous mechanisms of neuroprotection: to boost or not to boost. Cells. 2021;10(2):1–21. EDN: IIMVGU doi: 10.3390/cells10020370
  18. Novikov VE. Possibilities of pharmacological neuroprotection in cerebrovascular insufficiency. Moscow: Rhythm; 2024. 148 p. (In Russ.)
  19. Lucassen PJ, Oomen CA, Meerlo P, et al. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol. 2010;20(1):1–17. EDN: NAQVGN doi: 10.1016/j.euroneuro.2009.08.003
  20. Wang Y, Neumann M, Hansen K, et al. Fluoxetine increases hippocampal neurogenesis and induced epigenetic factors but does not improve functional recovery after traumatic brain injury. J Neurotrauma. 2011;28(2):259–268. doi: 10.1089/neu.2010.1648
  21. Novikov VE, Levchenkova OS, Pozhilova EV. Mitochondrial nitric oxide synthase in the mechanisms of cellular adaptation and its pharmacological regulation. Vestnik of the Smolensk State Medical Academy. 2016;15(1):14–22. EDN: VVVMDB
  22. Pozhilova EV, Novikov VE, Levchenkova OS. The regulatory role of mitochondrial pora and the possibility of its pharmacological modulation. Reviews on Clinical Pharmacology and Drug Therapy. 2014;12(3):13–19. EDN: TEONTP
  23. Novikov VE, Sharov AN. The effect of GABAERGIC agents on oxidative phosphorylation in the mitochondria of the brain in its traumatic edema. Pharmacology and Toxicology. 1991;54(6):44–46. (In Russ.)
  24. Pozhilova EV, Novikov VE, Abolmasov NN, et al. Neuropeptide Acth4-10 accelerates the adaptation of patients to dental prostheses. Vestnik of the Smolensk State Medical Academy. 2022;21(1):17–25. EDN: SZGMRE doi: 10.37903/vsgma.2022.1.3
  25. Hasselblatt M, Ehrenreich H, Siren AL. The brain erythropoietin system and its potential therapeutic exploitation in brain disease. J Neurosurg Anesthesiol. 2006;18(2):132–138. EDN: MEUOCR doi: 10.1097/00008506-200604000-00007
  26. Xenocostas A, Cheung WK, Farrell F, et al. The pharmacokinetics of erythropoietin in the cerebrospinal fluid after intravenous administration of recombinant human erythropoietin. Eur J Clin Pharmacol. 2005;61(3):189–195. EDN: IQUJRY doi: 10.1007/s00228-005-0896-7
  27. Semenza GL. Pharmacologic targeting of hypoxia-inducible factors. Annu Rev Pharmacol Toxicol. 2019;59:379–403. EDN: YRABRC doi: 10.1146/annurev-pharmtox-010818-021637
  28. Lukyanova LD. Signaling mechanisms of hypoxia. Moscow: Russian Academy of Sciences; 2019. 215 p. (In Russ.) EDN: ZXWRHB
  29. Novikov VE, Kulagin KN, Levchenkova OS, et al. Influence of preconditioning by amtizol and moderate hypoxia on brain mitochondrial function under experimental normoxia/cerebral ischemia conditions. Experimental and Clinical Pharmacology. 2019;82(12):3–8. EDN: WDPYUW doi: 10.30906/0869-2092-2019-82-12-3-8
  30. Sendoel A, Kohler I, Fellmann C, et al. HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase. Nature. 2010;465(7298):577–583. doi: 10.1038/nature09141
  31. Novikov VE, Levchenkova OS. Pharmacological regulation possibilities of hif for its’ mediated pathologies in clinical practice. Annals of the Russian academy of medical sciences. 2024;79(3):261–270. EDN: AIJRMA doi: 10.15690/vramn17946
  32. Sergesketter AR, Cason RW, Ibrahim MM, et al.Perioperative treatment with a prolyl hydroxylase inhibitor reduces necrosis in a rat ischemic skin flap model. Plast Reconstr Surg. 2019;143(4):769–779. EDN: PIUVWQ doi: 10.1097/PRS.0000000000005441
  33. Semenza GL. Breakthrough science: hypoxia-inducible factors, oxygen sensing, and disorders of hematopoiesis. Blood. 2022;139(16):2441–2449. EDN: UFJVXR doi: 10.1182/blood.2021011043
  34. Mahajan R, Samanthula G, Srivastava S, et al. A critical review of Roxadustat formulations, solid state studies, and analytical methodology. Heliyon. 2023;9(6):e16595. EDN: KHKCLL doi: 10.1016/j.heliyon.2023.e16595
  35. Levchenkova OS., Novikov VE. Possibilities of pharmacological preconditioning. Annals of the Russian academy of medical sciences. 2016;71(1):16–24. EDN: VPLXBD doi: 10.15690/vramn626
  36. Savyuk M, Krivonosov М, Mishchenko Т, et al. Neuroprotective effect of HIF Prolyl Hydroxylase inhibition in an in vitro hypoxia model. Antioxidants (Basel). 2020;9(8):662. EDN: CLLSUX doi: 10.3390/antiox9080662
  37. Chen J, Shou X, Xu Y, et al. A network meta-analysis of the efficacy of hypoxia-inducible factor prolyl-hydroxylase inhibitors in dialysis chronic kidney disease. Aging (Albany NY). 2023;15(6):2237–2274. doi: 10.18632/aging.204611.
  38. Lu F, Kato J, Toramaru T, Zhang M, et al. Pharmacological ischemic conditioning with roxadustat does not affect pain-like behaviors but mitigates sudomotor impairment in a murine model of deep hind paw incision. J Pain Res. 2023;16:573–587. EDN: UQBLKQ doi: 10.2147/JPR.S397054.
  39. Novikov VE, Maslova NN. The effect of mexidol on the course of posttraumatic epilepsy treatment. Experimental and Clinical Pharmacology. 2003;66(4):9–11. EDN: SVZUBT
  40. Levin OS, Dudarova MA, Usoltseva NI. Diagnosis and treatment of post-stroke cognitive impairment. Consilium medicum. 2010;12(2):5–12. (In Russ.) EDN: RBOCYL
  41. Studenikin VM, Balkanskaya SV, Pak LA, Shelkovsky VI. The use of cortexin in pediatric neurology: experience and prospects. Pharmateca. 2008;(14):16–22. (In Russ.) EDN: KBCFVZ
  42. Belenichev IF, Dunaev VV, Pavlov SV. Neuroprotector effect of cerebrocurin under acute cerebral stroke model conditions. Experimental and Clinical Pharmacology. 2010;73(2):6–9. (In Russ.) EDN: TNKCAZ
  43. Gomazkov OA. Cortexin: molecular mechanisms and targets of neuroprotective activity. S.S. Korsakov Journal of Neurology and Psychiatry. 2015;115(8):99–104. EDN: UKQWZV doi: 10.17116/jnevro20151158199-104
  44. Nemkova SA, Zavadenko NN, Suvorinova NYu. Use of cortexin in the multimodal neurorehabilitation of children. Russian Bulletin of Perinatology and Pediatrics. 2015;(3):37–44. (In Russ.) EDN: TXOHID
  45. Kurkin DV, Bakulin DA, Morkovin EI, et al. Neuroprotective action of Cortexin, Cerebrolysin and Actovegin in acute or chronic brain ischemia in rats. PLoS One. 2021;16(7):e0254493. EDN: SGAAUA doi: 10.1371/journal.pone.0254493
  46. Duma SN. Evaluation of clinical effectiveness of gaba-ergic neuroprotectors in the treatment of cognitive disorders in patients with dyscirculatory encephalopathy I-II stage. Pharmateca. 2010;(13):119–123. EDN: MWCMLP
  47. Shabanov PD. Neuroprotector metaprot: mechanism of action and new clinical uses. Consilium medicum. 2010;12(2):140–144. (In Russ.) EDN: RBODIB
  48. Novikov VE, Ponamareva NS, Shabanov PD. Aminothiol antihypoxants in traumatic brain edema. Saint-Petersburg: Elbi-SPb; 2008. 176 p. (In Russ.) EDN: QLTNKZ
  49. Rachin AP, Averchenkova AA. Idebenone (noben) — from theory to practice. S.S. Korsakov Journal of Neurology and Psychiatry. 2011;111(5):81–84. EDN: NZFFKV
  50. Parnetti L, Mignini F, Tomassoni D, et al. Cholinergic precursorsin the treatment of cognitive impairment of vascular origin. J Neurol Sci. 2007;257(1–2):264–269. EDN: ZIXGWB doi: 10.1016/j.jns.2007.01.043
  51. Álvarez-Sabín J, Román G. The role of citicoline in neuroprotection and neurorepair in ischemic stroke. Brain Sciences. 2013;3(3):1395–3414. doi: 10.3390/brainsci3031395.
  52. Secades JJ, Gareri P. Citicoline: pharmacological and clinical review, 2022 update. Revista de Neurología. 2022;75(Suppl 5):S1–89. doi: 10.33588/rn.75s05.2022311
  53. Sergeev DV, Domashenko MA, Piradov MA. Pharmacological neuroprotection in stroke in clinical practice: new perspectives. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(4):86–91. (In Russ.) EDN: YQQMKB doi: 10.17116/jnevro20171174186-91
  54. Secades J, Oudovenko N, Alvarez-Sabín J, et al. Citicoline for acute ischemic stroke: a systematic review and formal meta-analysis of randomized, double-blind, and placebo-controlled trials. J Stroke Cerebrovasc Dis. 2016;25(8):1984–1996. EDN: XTAVFL doi: 10.1016/j.jstrokecerebrovasdis.2016.04.010
  55. Mishchenko TS, Mishchenko VN, Lapshina IA. Gliatilin in the treatment of post-stroke patients. International Neurological Journal. 2016;82(4):25–31. EDN: XCNKSN doi: 10.22141/2224-0713.4.82.2016.77696
  56. Solovyova EYu, Mironova OP, Baranova OA, et al. Free radical processes and antioxidant therapy in cerebral ischemia. S.S. Korsakov Journal of Neurology and Psychiatry. 2008;108(6):37–42. (In Russ.) EDN: JTMLNP
  57. Fedorovich AA, Rogoza AN, Kanishcheva EM, et al. Dynamics of the functional activity of the microvascular endothelium during an acute pharmacological test with the drug actovegin. Consilium medicum. 2010;12(2):77–85. (In Russ.) EDN: RBODDB
  58. Burns MM, Greenberg DA. Antidepressants in the treatment of stroke. Exp Rev Neurotherapeutics. 2010;10(8):1238–1241. doi: 10.1586/ern.10.96
  59. Schiavan AP, Milani H, Romanini CV, et al. Imipramine enhances cell proliferation and decreases neurodegeneration in the hippocampus after transient global cerebral ischemia in rats. Neurosci Letters. 2010;470(1):43–48. doi: 10.1016/j.neulet.2009.12.052
  60. Novikov VE, Levchenkova OS, Pozhilova EV. Preconditioning as a method of metabolic adaptation to hypoxia and ischemia. Vestnik of the Smolensk State Medical Academy. 2018;17(1):69–79. EDN: YXHXPI
  61. Novikov VE, Levchenkova OS, Pozhilova EV. Pharmacological preconditioning: opportunities and prospects. Vestnik of the Smolensk State Medical Academy. 2020;19(2):36–49. EDN: OMTYRF doi: 10.37903/vsgma.2020:2.6
  62. Sragovich S, Bromberg Y, Sperling O, et al. Molecular alterations associated with the NMDA preconditioning-induced neuroprotective mechanism against glutamate cytotoxicity. J Molec Neurosci. 2012;47(3):519–532. EDN: NVPJIF doi: 10.1007/s12031-011-9668-2
  63. Levchenkova OS, Novikov VE, Abramova ES, et al. The signaling mechanism of the protective effect of combined preconditioning with amtisol and moderate hypoxia. Bulletin of Experimental Biology and Medicine. 2017;164(9):298–301. (In Russ.) EDN: ZGCGHX
  64. Levchenkova OS, Novikov VE, Kulagin KN, et al. Influence of combined pharmacological and hypoxic preconditioning on animal survival and functional activity of CNS during model cerebral ischemia. Experimental and Clinical Pharmacology. 2016;79(6):3–8. (In Russ.) EDN: WCOGFF doi: 10.30906/0869-2092-2016-79-6-3-8
  65. Levchenkova OS, Novikov VE, Parfenov EhA, et al. Neuroprotective effect of antioxidants and moderate hypoxia in the mode of combined preconditioning in cerebral ischemia. Bulletin of Experimental Biology and Medicine. 2016;162(8):173–177. (In Russ.) EDN: WHHGMP
  66. Levchenkova OS, Kulagin KN, Novikov VE. Cerebroprotective action of pharmacological and hypoxic preconditioning in brain ischemia. Vestnik of the Smolensk State Medical Academy. 2017;16(2):15–21. (In Russ.) EDN: YPCMXX
  67. Levchenkova OS, Novikov VE, Korneva YS, et al. Combined preconditioning reduces the negative effect of cerebral ischemia on the morphofunctional state of the central nervous system. Bulletin of Experimental Biology and Medicine. 2021;171(4):507–512. EDN: NAETUN doi: 10.47056/0365-9615-2021-171-4-507-512
  68. Novikov VE, Levchenkova OS, Klimkina EI, et al. Potentiation of the hypoxic preconditioning effect by antihypoxants. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(1):37–44. EDN: PHNAKT doi: 10.7816/RCF17137-44
  69. Novikov VE, Levchenkova OS, Korneva YuS. Morphological changes in the hippocampus of the rat brain in ischemia and in conditions of combined preconditioning. Psychopharmacology and Biological Narcology. 2024;15(2):117–126. EDN: GIWZVV doi: 10.17816/phbn626415

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The effect of amthysole and moderate hypobaric hypoxia (HBH) on neurological deficit (assessed using the McGraw scale) in rats 1 day after bilateral common carotid artery occlusion. Differences are considered significant at p <0.05 (Mann–Whitney U test) compared with the following groups: * — sham-operated group, # — “Ischemia” group

Download (63KB)

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 84654 от 01.02.2023 г