ON THE POSSIBLE USE OF EXOGENOUS HISTONES AND CATIONIC PEPTIDES IN MOLECULAR BIOTECHNOLOGY


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The prospect of developing transport systems using histones for delivery of therapeutic agents possessing poor penetration characteristics through cellular membranes and tissue barriers has been investigated. A review of the literary, as well as proper data, are presented concerning of mucoadhesive protein therapeutic agents. Delivery systems have been designed to obtain entrapment of protein therapeutic agents into nanoshperes during nanosphere preparation from dextran. Such mucoadhesive delivery systems containing histones immobilized on nanospheres for site-specific delivery of protein therapeutic agents to target (organ or tissue) for intranasal delivery. An increase in the mucoadhesive properties of dextran nanospheres with diameter of100-200nm coated by histones is due to electrostatic interaction of positively charged histones with negatively charged mucins of sialic acid, which leads to the formation of mucus layer and nanospheres associations over a long period of time. Moreover, the release of protein during nanospheres resorption can occur in mucus layer due to the fact that the protein will be absorbed paracellular or transcellular in the underlying epithelium of the mucous membrane. Further protein intake can be carried out along the olfactory epithelial route by means of axoplasmic transport along of olfactory neurons into the olfactory bulbs and from them using neuronal pathways in central nervous system. Histones immobilized on nanospheres can also be used to modify surfaces intended for cell cultivation. They can be applied as components to three-dimensional pore matrices that are designed for producing tissue-like structures in vitro.

Full Text

Restricted Access

About the authors

A. D Nozdrachev

Pavlov Institute of Physiology, Russian Academy of Sciences; St.Petersburg State University

Email: pushkeen@gmail.com
Saint-Petersburg, Russian Federation

O. A Goryukhina

St.Petersburg State University

Email: pushkeen@gmail.com
Saint-Petersburg, Russian Federation

S. V Martyushin

State Research Institute of Highly Pure Biopreparations

Email: pushkeen@gmail.com
Saint-Petersburg, Russian Federation

I. V Mishchenko

St.Petersburg State University

Email: pushkeen@gmail.com
Saint-Petersburg, Russian Federation

References

  1. Бредбери М. Концепция гематоэнцефалического барьера. Перевод с англ. М.: Медицина, 1983; 480.
  2. Мищенко В.А., Горюхина О.А. Структура, проницаемость гематоэнцефалического барьера и перспективы доставки через него лекарственных средств. Журн. невропатол. и психиатр. 1996; 9б (4): 1І6-20.
  3. Pardridge W.M. Drug delivery to the brain. J. Cerebral Blood Flow Metabol. 1997; 17: 713-31.
  4. Bickel U., Yoshikawa T., Pardridge W.M. Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Deliv Rev. 2001; 46 (1-3): 247-79.
  5. Pardeshi C.V, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv. 2013; 10 (7): 957-72.
  6. Привалова А.М., Гуляева Н.В., Букреева Т.В. Интраназальное введение - перспективный способ доставки лекарственных веществ в
  7. Dhuria S.V., Hanson L.R., Frey W.H. 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J. Pharm Sci. 2010; 99 (4): 1654-73.
  8. Bourganis V., Kammona O., Alexopoulos A., Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur. J. Pharm Biopharm. 2018; 128: 337-62.
  9. Crowe T.P., Greenlee M.H.W., Kanthasamy A.G., Hsu W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018; 195: 44-52.
  10. Li Y., Field P.M., Raisman G. Olfactory en-sheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibres. Glia. 2005; 52 (3): 245-51.
  11. Lochhead J.J., Thorne R.G. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012; 64 (7): 614-28.
  12. Mythri G., Kavitha K., Rupesh Kumar M., Sd. Jagadeesh Singh. Novel Mucoadhesive Polymers. A Review J. of Applied Pharmaceutical Science. 2011; 1 (8): 37^2.
  13. I llum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J. Pharm Sci. 2007; 96 (3): 473-83.
  14. Perez-Vilar J., Mabolo R. Gel-forming mucins. Notions from in vitro studies. Histol Histopathol. 2007; 22 (4): 455-64.
  15. Khutoryanskiy V.V. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011; 11 (6): 748-64.
  16. I llum L. Is nose-to-brain transport of drugs in man a reality? J. Pharm Pharmacol. 2004; 56 (1): 3-17.
  17. Hillaireau H., Couvreur P. Nanocarriers' entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 2009; 66 (17): 2873-96.
  18. Rejman J., Oberle V., Zuhorn I.S., Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004; 377 (1): 159-69.
  19. Harush-Frenkel O., Debotton N., Benita S., Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun. 2007; 353 (1): 26-32.
  20. Mistry A., Glud S.Z., Kjems J., Randel J., Howard K.A., Stolnik S., Illum L. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. J. Drug Target. 2009; 17 (7): 543-52.
  21. Mistry A., Stolnik S., Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J. Pharm. 2009; 379 (1): 146-57.
  22. Mistry A., Stolnik S., Illum L. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium. Mol. Pharm. 2015; 12 (8): 2755-66.
  23. Samaridou E., Alonso M.J. Nose-to-brain peptide delivery. The potential of nanotechnology. Bioorg Med Chem. 2018; 26 (10): 2888-905.
  24. Rothbard J.B., Jessop T.C., Lewis R.S., Murray B.A., Wender P.A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J. Am. Chem Soc. 2004; 126 (31): 9506-7.
  25. Gump J.M., Dowdy S.F. TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol. Med. 2007; 13 (10): 443-8.
  26. Xia H., Gao X., Gu G., Liu Z., Zeng N., Hu Q., Song Q., Yao L., Pang Z., Jiang X., Chen J., Chen H. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials. 2011; 32 (36): 9888-98.
  27. Nakase I., Takeuchi T., Tanaka G., Futaki S. Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides. Adv Drug Deliv Rev. 2008; 60 (4-5): 598-607.
  28. Mitchell D.J., Kim D.T., Steinman L., Fathman C.G., Rothbard J.B. Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept Res. 2000; 56 (5): 318-25.
  29. Cronican J.J., Beier K.T., Davis T.N., Tseng J.C., Li W., Thompson D.B., Shih A.F., May E.M., Cepko C.L., Kung A.L., Zhou Q., Liu D.R. A class of human proteins that deliver functional proteins into mammalian cells in vitro and in vivo. Chem Biol. 2011; 18 (7): 833-8.
  30. Isenberg I. Histones. Ann. Rev. Biochem. 1979; 48: 159-91.
  31. Minuth WW, Strehl R., Schumacher K. In: Tissue engineering: essentials for daily laboratory work. Wiley-VCH Verlag GmbH&Co KGaA. 2005; 314.
  32. Changjun Mu, Heng Liu, Guo-Chang Zheng. Модификации и варианты гистонов: их роль в организации хроматина. Молекулярная биология. 2007; 41 (3): 395^07.
  33. Goryukhina O.A., Martyushin S.V., Pinaev G.P. On the possible use of exogenous histones in cell technology. Cell Biol Int. 2011; 35 (12): 1189-93.
  34. Ашмарин И.П., Ждан-Пушкина С.М., Кокряков В.И., Самедов А.Ш., Антонова С.Н. Антибактериальные и антивирусные функции основных белков клетки и перспективы практического их использования. Известия Академии Наук СССР. 1972; 4: 502-8.
  35. Kawasaki H., Iwamuro S. Potential roles of histones in host defence as antimicrobial agents. Infect. Disord. Drug. Targets. 2008; 8: 195-205.
  36. Горюхина О.А, Леонтьева Г.Ф., Кашкин А.П. Некоторые антигенные свойства препарата тотального гистона тимуса теленка. Журн. микробиол. эпидемиол. иммунол. 1978; 11: 91-6.
  37. Pisetsky D.S. Antinuclear antibodies in rheumatic disease: a proposal for a function-based classification. Scand J. Immunol. 2012; 76 (3): 223-8.
  38. Muller S. Histone antibodies. In: Autoantibodies, 3rd Edition San Amsterdam, Boston, Heidelberg, London, New York ,Oxford, Paris, San Diego, San Francisko, Singapore, Sydney, Tokyo. Elsevier. 2014; Ch. 20: 195-201.
  39. Ryser H.J., Hancock R. Histones and basic polyamino acids stimulate the uptake of albumin by tumor cells in culture. Science. 1965; 150: 501-3.
  40. Hariton-Gazal E., Rosenbluh J., Graessmann A., Gilon C., Loyter A. Direct translocation of histone molecules across cell membranes. J. Cell Sci. 2003; 116 (22): 4577-86.
  41. Mishchenko I.V., Goryukhina O.A. Permeability of blood-brain barrier to cationic proteins (Physiology department of Saint-Petersburg State University Russia). In: XXXIII International Congress of Physiological Sciences St. Petersburg. 1997; P070.32.
  42. Горюхина О.А., Илюк Р.Д., Мищенко И.В. Сравнительное исследование поступления экзогенного гистона в паренхиму головного мозга крыс. Бюлл. экспер. биол. мед. 2000; 130 (7): 63-6.
  43. Гладышева О.С., Троицкая В.Т., Абрамова Н.Н., Ревитин В.Г, Горюхина О.А., Аль-Суфи Д. Сравнительное исследование транспорта экзогенного радиоактивного гистона при различных способах введения. Бюлл. Экспер. Биол. Мед. 1994; 117 (5): 484-6.
  44. Гладышева О.С., Горюхина O.A., Троицкая B.Т. Влияние препарата эндогенного гистона на внутривидовую агрессию самцов мышей при различных способах его введения. Бюлл. Экспер. Биол. Мед. 1995; 120 (9): 271-2.
  45. Матюшичев В.Б., Горюхина О.А., Немцова Н.Н. Получение и некоторые свойства ковалентных конъюгатов суммарного гистона с канамицином. Вопр. мед. химии. 1995; 41 (2): 8-11.
  46. Горюхина О.А., Мартюшин С.В., Блинова М.И., Полянская Г.Г., Черепанова О.А., Пинаев Г.П. Культивирование клеток на микросферах, покрытых гистонами. Цитология. 2010; 52 (1): 12-23.
  47. Горюхина О.А., Мартюшин С.В., Пинаев ГП. Способ получения трехмерных матриц для тканеподобных структур из клеток животного происхождения. 2010. Патент на изобретение №2396342 С1. Российская Федерация.
  48. Marasini N., Skwarczynski M., Toth I. Intranasal delivery of nanoparticle-based vaccines. Ther Deliv. 2017; 8 (3): 151-67.
  49. Ноздрачев А.Д., Горюхина О.А., Мартюшин C.В., Мищенко И.В. Способ получения нативного белка пролонгирующего действия в составе полимерных наносфер и резорбируемых микросфер для доставки. 2018. Патент на изобретение №2647466 C1. Российская Федерация. Патент на изобретение №201700521 A2. Евразийсоке патентное ведомство. 2018.
  50. Ноздрачев А.Д., Горюхина О.А., Мартюшин С.В., Мищенко И.В. Способ получения полимерных наносфер для направленной доставки к ткани-мишени. 2019. Подана заявка на изобретение в Федеральный институт промышленной собственности Федеральной службы по интеллектуальной собственности (Роспатент) на выдачу патента Российской Федерации на изобретение. Дата поступления заявки 13.06.2019. Регистрационный номер №2019118349.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies