PROTEASOME FUNCTIONING IN PRETUMORAL AND NEOPLASTIC HUMAN EPITHELIUM


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review describes the characteristics of the ubiquitin-proteasome system involved in proteins degradation and its role in the transition of pretumor changes of the epithelium to cancer. According to modern concepts, the ubiquitin-proteasome system is actively involved in the regulation of numerous intracellular processes, such as proliferation, apoptosis, differentiation, which play an important role in the development of tumors. Main target proteins which have been shown to be cleaved in proteasomes, can participate in carcinogenesis. Detailed research of the ubiquitin-proteasome system will reveal the specific mechanisms involved in the transition of precancerous diseases to malignant neoplasms.

Full Text

Restricted Access

About the authors

E. A Sidenko

Tomsk National Research Medical Center, Russian Academy of Sciences

Email: sidenkoevgeniyaaleksandrovna@gmail.com
Cancer Research Institute Tomsk, Russian Federation

G. V Kakurina

Tomsk National Research Medical Center, Russian Academy of Sciences

Cancer Research Institute Tomsk, Russian Federation

O. V Cheremisina

Tomsk National Research Medical Center, Russian Academy of Sciences

Cancer Research Institute Tomsk, Russian Federation

E. E Shashova

Tomsk National Research Medical Center, Russian Academy of Sciences

Cancer Research Institute Tomsk, Russian Federation

E. S Kolegova

Tomsk National Research Medical Center, Russian Academy of Sciences

Cancer Research Institute Tomsk, Russian Federation

I. V Kondakova

Tomsk National Research Medical Center, Russian Academy of Sciences

Cancer Research Institute Tomsk, Russian Federation

References

  1. Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2015; 68 (6): 394-424. https://doi.org/10.3322/caac.2149
  2. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2017 г. (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018; 250.
  3. Hu J.X., Helleberg M., Jensen A.B., Brunak S., Lundgren J.A Large-Cohort, Longitudinal Study Determines Precancer Disease Routes across Different Cancer Types. Cancer research. 2019; 79 (4): 864-72. https:// doi.org/10.1158/0008 5472.CAN-18-1677
  4. Сычева Н.Л., Фаустов Л.А. Эндокринный компонент ранней онкологической патологии при экспериментальном раке кишечника. Научный результат. Медицина и фармация. 2017; 3 (1): 15-23. https:// doi.org/10.18413/2313-8955-2017-3-1-15-23
  5. Rajalekshmi M., Shreedhara C.S., Lobo R., Rao P.P. The Review on Genetics, Epigenetics, Risk Factors and Diagnosis of Colon Cancer. Research J. Pharm. and Tech. 2018; 11 (11): 5147-51. https://doi. org/10.5958/0974-360X.2018.00940.X
  6. Табакман Ю.Ю., Солопова А.Г., Биштави А., Идрисова Л.Э. Предрак эндометрия: определение понятия, тактика. Акушерство, гинекология и репродукция. 2016; (2): 32-6. https://doi.org/10.17749/2313-7347.2016.10.2.032-036 https://doi. org/10.17749/2313-7347.2016.10.2.032-036]
  7. Avila D.D., D'Âvila J., Gois C., Barretto L. Premalignant laryngeal lesions: twenty-year experience in specialized service. Int. Arch. Otorhinolaryngol. 2014; 18 (4): 352-6. https://doi.org/10.1055/s-0034-1376431
  8. Михалева Л.М., Бирюков А.Е., Полянко Н.И. Предраковые поражения и ранний рак желудка: современные клинико-морфологические данные. Клиническая медицина. 2017; 95 (10): 881-7. https://doi. org/10.18821/0023-2149-2017-95-10-881-887 https://doi.org/10.18821/0023-2149-2017-95-10-881-887]
  9. Varshavsky A. The ubiquitin system, autophagy, and regulated protein degradation. Annu. Rev. Biochem. 2017; 86: 123-8. https://doi.org/10.1146/annurev-biochem-061516-044859
  10. Цимоха А.С. Протеасомы: участие в клеточных процессах. Цитология. 2010; 52 (4): 277-300.
  11. Schmidt M., Finley D. Regulation of proteasome activity in health and disease. Biochimica et Biophysica Acta. 2014; 1843 (1): 13-25. https://doi.org/10.10Wj. bbamcr. 2013.08.012
  12. Kish-Trier E., Hill C.P. Structural biology of the proteasome. Annu. Rev. Biophys. 2013; 42: 29-49. https://doi.org/10.1146/annurev-biophys-083012-130417
  13. Сорокин А.В., Ким Е.Р., Овчинников Л.П. Протеасомная система деградации и процессинга белков. Успехи биологической химии. 2009; 49: 3-76.
  14. Baugh J.M., Viktorova E.G., Pilipenko E.V. Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J. Mol. Biol. 2009; (3): 814-27. https://doi.org/10.10Wj. jmb.2008.12.081
  15. Kumar Deshmukh F., Yaffe D., Olshina M.A., Ben-Nissan G., Sharon M. The Contribution of the 20S Proteasome to Proteostasis. Biomolecules. 2019; 9 (5): 190. https://doi. org/10.3390/biom9050190
  16. Raynes R., Pomatto L.C., Davies K.J. Degradation of oxidized proteins by the proteasome: distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Mol. Asp. Med. 2016; 50: 41-55. https://doi.org/10.10Wj.mam.2016.05.001
  17. Ben-Nissan G., Sharon M. Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules. 2014; 4 (3): 862-84. https://doi.org/10.3390/ biom4030862
  18. Silva G.M., Netto L.E., Simoes V., Santos L.F., Gozzo F.C., Demasi M.A., Oliveira C.L., Bicev R.N., Klitzke C.F., Sogayar M.C., Demasi M. Redox control of 20S proteasome gating. Antioxidants & redox signaling. 2012; 16 (11): 1183-94. https://doi. org/10.1089/ars.2011.4210
  19. Olshina M.A., Ben-Nissan G., Sharon M. Functional regulation of proteins by 20S proteasome proteolytic processing. Cell Cycle. 2018; 17 (4): 393-4. https://doi.org/1 0.1080/15384101.2017.1414682
  20. Chen S., Wu J., Lu Y., Ma Y.B., Lee B.H., Yu Z., Ouyang Q., Finley D.J., Kirschner M.W., Mao Y. Structural basis for dynamic regulation of the human 26S proteasome. PNAS. 2016; 113 (46): 12991-6. https://doi.org/10.1073/ pnas.1614614113
  21. Schweitzer A., Aufderheide A., Rudack T., Beck F., Pfeifer G., Plitzko J.M., Sakata E., Schulten K., Förster F., Baumeister W. Structure of the human 26S proteasome at a resolution of 3.9 A. PNAS. 2016; 113 (28): 7816-21. https://doi.org/10.1073/ pnas.1608050113
  22. Кондакова И.В., Спирина Л.В., Коваль B.Д., Шашова Е.Е., Чойнзонов Е.Л., Иванова Э.В., Коломиец Л.А., Чернышова А.Л., Слонимская Е.М., Усынин Е.А., Афанасьев C.Г. Химотрипсинподобная активность и субъединичный состав протеасом в злокачественных опухолях человека. Молекулярная биология. 2014; 48 (3): 444-51. https://doi.org/10.7868/S0026898414030112 https://doi.org/10.7868/ S0026898414030112]
  23. Ivanova E.V., Kondakova I.V., Spirina L.V., Afanas'ev S.G., Avgustinovich A.V., Cheremisina O.V. Chymotrypsin-like activity of proteasomes and total calpain activity in gastric and colorectal cancer. Bulletin of Experimental Biology and Medicine. 2014; 157 (6): 781-4. https://doi.org/10.1007/ s10517-014-2666-y
  24. Шашова Е. Е., Астахова Т.М., Плеханова А.С., Богомягкова Ю.В., Люпина Ю.В., Сумеди И.Р, Слонимская Е.М., Ерохов П.А., Абрамова Е.Б., Родоман Г.В., Кузнецов Н.А., Кондакова И.В., Шарова Н.П., Чойнзонов Е.Л. Изменение химотрипсинподобной активности протеасом в развитии карцином молочной и щитовидной желез человека. Бюллетень экспериментальной биологии и медицины. 2013; 156 (8): 209-11.
  25. Le-Bel G., Benhassine M., Landreville S., Guérin S.L. Analysis of the proteasome activity and the turnover of the serotonin receptor 2B (HTR2B) in human uveal melanoma. Exp. Eye Res. 2019; 184: 72-7. https://doi.org/10.10Wj.exer.2019.04.013
  26. Shashova E.E., Lyupina Y.V., Glushchenko S.A., Slonimskaya E.M., Savenkova O.V, Kulikov A.M., Gornostaev N.G., Kondakova I.V., Sharova N.P Proteasome functioning in breast cancer: connection with clinical-pathological factors. PLoS One. 2014; 9 (10): e109933. https://doi.org/10.1371/jour-nal.pone.0109933
  27. FeiFei W., HongHai X., YongRong Y, Ping Xiang W., JianHua W., XiaoHui Z., JiaoYing L., JingBo S., Kun Z., XiaoLi R., Lu Q., XiaoLiang L., ZhiQiang C., Na T., WenTing L., YanQing D., Li L. FBX8 degrades GSTP1 through ubiq-uitination to suppress colorectal cancer progression. Cell death & disease. 2019; (5): 351. https://doi.org/10.1038/s41419-019-1588-z
  28. Chen L., Zhu G., Johns E.M., Yang, X. TRIM11 activates the proteasome and promotes overall protein degradation by regulating USP14. Nature communications. 2018; 9 (1): 1223. https://doi.org/10.1038/s41467-018-03499-z
  29. Cai M.J., Cui Y, Fang M., Wang Q., Zhang A.J., Kuai J.H., Pang F., Cui X.D. Inhibition of PSMD4 blocks the tumorigenesis of hepatocellular carcinoma. Gene. 2019; 702: 66-74. https://doi.org/10.10Wj. gene.2019.03.063
  30. Шашова Е.Е., Колегова Е.С., Кондакова И.В., Завьялов А.А. Внутриклеточный и циркулирующий пулы протеасом: значение при злокачественных новообразованиях различных локализаций. Сибирский онкологический журнал. 2015; 6: 76-82.
  31. Pecci A., Necchi V, Barozzi S., Vitali A., Boveri E., Elena C., Bernasconi P., Noris P., Solcia E. Particulate cytoplasmic structures with high concentration of ubiquitin-proteasome accumulate in myeloid neoplasms. Journal of hematology & oncology. 2015; 8 (1): 71. https://doi.org/10.1186/ s13045-015-0169-6
  32. Кондакова И.В., Какурина Г.В., Спирина Л.В., Черемисина О.В., Панкова О.В., Меньшиков К.Ю. Оценка внеклеточного и внутриклеточного протеолиза при предопухолевых и опухолевых заболеваниях гортани. Сибирский онкологический журнал. 2014; 3: 45-50.
  33. Спирина Л.В., Кондакова И.В., Коломиец Л.А., Чернышова А.Л., Асадчикова О.Н., Шарова Н.П., Коваль В.Д. Активность протеасом и их субъединичный состав при гиперпластических процессах и раке эндометрия. Опухоли женской репродуктивной системы. 2011; 4: 64-8.
  34. Furuyama T., Tanaka S., Shimada S., Akiyama Y., Matsumura S., Mitsunori Y., Aihara A., Ban D., Ochiai T., Kudo A., Fukamachi1 H., Arii S., Kawaguchi Y., Tanabe M. Proteasome activity is required for the initiation of precancerous pancreatic lesions. Scientific reports. 2016; 6: 27044. https://doi. org/10.1038/srep27044
  35. Zhong J.L., Huang C.Z. Ubiquitin protea-some system research in gastrointestinal cancer. World J. Gastrointest. Oncol. 2016; (2): 198-206. https://doi.org/10.4251/ wjgo.v8.i2.198
  36. Kunjappu M.J., Hochstrasser M. Assembly of the 20S proteasome. Biochimica et Biophysica Acta. 2014; 1843 (1): 2-12. https:// doi.org/10.1016/j.bbamcr.2013.03.008
  37. Носарева О.Л., Степовая Е.А., Рязанцева Н.В., Шахристова Е.В., Орлов Д. С., Новицкий В.В. Убиквитин и регуляция апоптоза опухолевых клеток линии Jurkat. Бюллетень сибирской медицины. 2018; 17 (3): 96-104. https://doi. org/10.20538/1682-0363-2018-3-96-104.
  38. Zeng W., Wei X., Xie K., Diao P., Tang P. Potential use of chymotrypsin-like proteasomal activity as a biomarker for prostate cancer. Oncology letters. 2018; (4): 5149-54. https://doi.org/10.3892/ ol.2018.7936
  39. Pavlides S.C., Lecanda J., Daubriac J., Pandya U.M., Gama P., Blank S., Mittal K., Shukla P., Gold L.I. TGF-ß activates APC through Cdh1 binding for Cks1 and Skp2 proteasomal destruction stabilizing p27kip1 for normal endometrial growth. Cell Cycle. 2016; 15 (7): 931-47. https://doi.org/10.1080 /15384101.2016.1150393
  40. Chen H., Liu H., Qing G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal transduction and targeted therapy. 2018; 3 (1): 5. https://doi. org/10.1038/s41392-018-0008-7
  41. Schoedel J., Grampp S., Maher E.R., Moch H., Ratcliffe P.J., Russo P., Mole D.R. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. European urology. 2016; 69 (4): 646-57. https://doi.org/10.10Wj. eururo.2015.08.007
  42. Rorsman C., Tsioumpekou M., Heldin C.H., Lennartsson J. The ubiquitin ligases c-Cbl and Cbl-b negatively regulate platelet-derived growth factor (PDGF) BB-induced chemotaxis by affecting PDGF receptor ß (PDGFRß) internalization and signaling. Journal of Biological Chemistry. 2016; 291 (22): 11608-18. https://doi.org/10.1074/jbc. M115.705814
  43. Kravtsova-Ivantsiv Y., Shomer I., Cohen-Kaplan V, Snijder B., Superti-Furga G., Gonen H., Sommer T., Ziv T., Admon A., Naroditsky I., Jbara M., Brik Ashraf., Pikarsky E., Tae Kwon Y, Doweck I., Ciechanover A. KPC1-mediated ubiquitination and proteasomal processing of NF-kB1 p105 to p50 restricts tumor growth. Cell. 2015; 161 (2): 333-47.
  44. Helzer K.T., Hooper C., Miyamoto S., Alarid E.T Ubiquitylation of nuclear receptors: new linkagesand therapeutic implications.Journal of molecular endocrinology. 2015; 54 (3): 151-67. https://doi.org/10.1530/JME-14-0308
  45. Ibanez-Vega J., Batalla F.D. V., Saez J.J., Soza A., Yuseff M.I. Proteasome dependent actin remodeling facilitates antigen extraction at the immune synapse of B cells. Frontiers in immunology. 2019; 10: 225. https://doi.org/10.3389/fim-mu.2019.00225
  46. Jeong D.H., Choi YN., Seo T.W., Lee J.S., Yoo S.J. Ubiquitin-proteasome dependent regulation of Profilin2 (Pfn2) by a cellular inhibitor of apoptotic protein 1 (cIAP1). Biochemical and Biophysical Research Communications. 2018; 506 (3): 423-8. https://doi.org/10.1016/j.bbrc.2018.10.115

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies