COMPUTATIONAL TOOLS AND METHODS FOR THE IMPLEMENTATION AND ELABORATION OF MOLECULAR DOCKING FOR ENZYMES OF THE MEDICAL DESTINATION


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

At present biomedical research is based on joint fulfillment of theoretical and experimental investigations of various derivatives of potential therapeutic destination. Well-balanced combination of noted studies is provided for the high reliability of ensemble for obtained results. The implementation of molecular docking of high-molecule pharmacological compounds with different ligands of their natural microenvironment is notably important among such investigations. It should be noted the perspectives of such results for study of enzymes. The investigations of such kind are directed on ascertainment of mechanism of the action of these agents in biological systems and grounding of productive manners for obtaining of the high efftcacy of drug preparations of the enzyme nature. The implementation of molecular docking was conduced the lead-in of glycosaminoglycans (components of endothelial glycocalyx of the protective layer of the vessel wall) to circle of research interest. The implementation of molecular docking with elaboration of its data by methods of molecular dynamics became a productive approach for development of theoretical models of protein-glycosaminoglycan complexes. Algorithms of docking and scoring functions, conformational alterations of enzyme structure (on short /ps and ns/ more continual scale of time) were considered. The ponderable challenge of molecular docking progress was demonstrated as using of notion of the enzyme structure flexibility due to a mode of molecular dynamics with modeling of all freedom degrees in enzyme-ligand complex.

Full Text

Restricted Access

About the authors

A. V Maksimenko

National Medical Research Center for Cardiology

Email: alex.v.maks@mail.ru
Institute of Experimental Cardiology Moscow, Russian Federation

References

  1. Maksimenko A.V Development and application of targeted therapeutic protein conjugates. Russ. J. Gen. Chem. 2014; 84 (2): 357-63. https://doi.org/10.1134/S1070363214020376
  2. Maksimenko A.V. Results and achievements in the engineering of pharmacological enzymes for clinical application. Med. Res. Arch. 2018; 6 (1): 1-13. http://journals.ke-i.org/index.php/mra
  3. Максименко А.В. Молекулярные аспекты трансляционной кардиологии в исследованиях сосудистой стенки. Кардиология. 2017; 57 (7): 66-79. https://doi.org/10.18087/ cardio.2017.7.10008 htfps://doi.org/10.18087/cardio.2017.7.10008)
  4. Reitsma S., Slaaf D.W., Vink H., van Zandvoort M.A., onde Egbrink M.G. The endothelial glycocalyx: composition, function, and visualization. Pflüger's Arch. 2007; 454 (3): 345-59.
  5. Maksimenko A.V. Translational research into vascular wall function: regulatory effects of systemic and specific factors. J. Transl. Sci. 2017; 3 (2): 1-10. https://doi.org/10.15761/JTS.1000180
  6. Nieuwdorp M., Meuwese M.C., Vink H., Hoekstra J.B., Kastelein J.J., Stroes E.S.G. The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr. Opin. Lipidol. 2005; 16: 507-11.
  7. Broekhuisen L.N., Moojij H.L., Kastelein J.J., Stroes E.S.G., Vink H., Nieuwdorp M. Endothelial glycocalyx as potential diagnostic and therapeutic target in cardiovascular disease. Curr. Opin. Lipidol. 2009; 20: 57-62.
  8. Максименко А.В. Эндотелиальный гликокаликс - настройщик сосудистого гомеоста за. Новые исследовательские задачи и перспективы защиты стенки кровеносных сосудов. Изв. АН. Сер. Хим. 2015; 64 (9): 2036-42.
  9. Yang J., Chi L. Characterization of structural motifs for interactions between glycosaminoglycans and proteins. Carbohydrate Res. 2017; 452: 54-63.
  10. Almond A. Multiscale modeling of glycosaminoglycan structure and dynamics: current methods and challenges. Curr. Opin. Struct. Biol. 2018; 50: 58-64. hffp://doi.org/10.1016/j. sbi.2017.11.008
  11. Sankaranarayanan N.V., Nagarajan B., Desai U.R. So you think computational approaches to understanding glycosaminoglycan - protein interactions are too dry and too rigid? Think again! Curr. Opin. Struct. Biol. 2018; 50: 91-100. http://doi.org/10.101ô/j.sbi.2017.12.004
  12. Griffith A.D., Rogers C.J., Miller C.M., Abrol R., Hsieh-Wilson L.C., Goddard III W.A. Predicting glycosaminoglycan surface protein interactions and implications for studying axonal growth. Proc. Natl. Acad. Sci. USA. 2017; (52): 13697-702. http://doi.org/10.1073/ pnas.1715093115
  13. Schulz-Gasch T., Stahl M. Binding site characteristics in structure-based virtual screening: evaluation of current docking tools. J. Mol. Model. 2003; 9: 47-57. http://doi.org/10.1007/ s00894-002-0112-y
  14. Xu D., Esko J.D. Demystifying heparan sulfate -protein interactions. Ann. Rev. Biochem. 2014; 83: 129-57. https://doi.org/10.1140/annurev-biochem-000713-035314
  15. Woods R.J., Tessier M.B. Computational glycoscience: characterizing the spatial and temporal properties of glycans and glycan-protein complexes. Curr. Opin. Struct. Biol. 2010; 20: 575-83.
  16. Zhou Z., Bates M., Madura J.D. Structure modeling, ligand binding, and binding affinity calculation (LR-MM-PBSA) of human heparanase for inhibition and drug design. Proteins: Structure, Function, and Bioinformatics. 2006; 65 (3): 580-92.
  17. Максименко А.В., Бибилашвили Р.Ш. Конформационные переходы на 3D модели бычьей тестикулярной гиалуронидазы при молекулярном докинге с гликозаминогликановыми лигандами. Биоорган. Химия. 2018; 44 (2): 147-57. http://doi.org/10.1134/S1068162018020048 http://doi.org/10.1134/S1068162018020048]
  18. Hage K.E., Brickel S., Hermelin S.,Gaulier G., Schmidt C., Bonacina L., van Keulen S.C., Bhattacharyya S., Chergui M., Hamm P., Rothlisberger U., Wolf J.-P., Meuwly M. Implication of short time scale dynamics on long time process. Struct. Dyn. 2017; 4: 061507. http:// doi.org/10.10ô3/1/499ô448
  19. Meng X.-Y., Zhang H.-X., Mezei M., Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011; 7 (2): 146-57.
  20. Zhang L., Ai H.-X., Li S.-M., Qi M.-Y., Zhao J., Liu H.-S. Virtual screening approach to identifying influenza virus neuraminidase inhibitors using molecular docking combined with machine-learning-based scoring function. Oncotarget. 2017; 8 (47): 83142-54.
  21. Jug G., Anderluh M., Tomasic T. Comparative evaluation of several docking tools for docking small molecule ligands to DC-SIGN. J. Mol. Model. 2015; 21: 164. http://doi.org/10.1007/ S00894-015-2713-2

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies