COLLAGEN EXCHANGE AND CONTENT OF MINERAL SUBSTANCES IN BONE TISSUE OF ANIMALS WITH EXPERIMENTAL DIABETES


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The risk of bone tissue disturbance leading to a disability of diabetes mellitus patients brisks up the study of the mechanisms of diabetic osteopathy. The aim of the study. To study the indices of collagen exchange, the content of components of a mineral matrix of compact and spongy bone tissue in rats with alloxan diabetes. Methods. In the diaphysis of the femur and the body of the second lumbar vertebra of rats have been determined: the level of carboxyterminal telopeptide of collagen type I using the method of enzyme-linked immunosorbent assay (β-CrossLaps; ELISA); the amount of total collagen, as well as neutral salt-soluble collagen basing on the concentration of hydroxyproline applying in colorimetric method; the content of calcium and phosphorus using the method of atomic emission spectroscopy with inductive bind plasma. All the readings mentioned above were studied on the 7h, 14th, 21st and 28th day after injecting alloxan tetrahydrate. Results. A decrease in a quantity of neutral salt-soluble collagen was noted in the bone tissue of experimental rats, that points out the synthesis of a given biopolymer inhibition. The concentration of β-CrossLaps - the marker of collagen decay - was increasing in the tissues studied since the 14h day of the research. Total collagen content in the femur was reduced at the 21st and 28th days of the experiment, and in the vertebra during the whole period of observation. The processes of collagen catabolism activation were accompanied by diminution of calcium and phosphorus content both in the femur and vertebra. Conclusion. In the bone tissue of alloxan-induced rats, the processes of degradation prevailed. It resulted in the decrease both of total collagen content and mineral matrix components.

Full Text

Restricted Access

About the authors

N. V Savinova

Izhevsk State Medical Academy

Email: biochem2017@mail.ru
Izhevsk, the Udmurt Republic, Russian Federation

O. V Danilova

Izhevsk State Medical Academy

Email: biochem2017@mail.ru
Izhevsk, the Udmurt Republic, Russian Federation

E. G Butolin

Izhevsk State Medical Academy

Email: biochem2017@mail.ru
Izhevsk, the Udmurt Republic, Russian Federation

V. A Vyatkin

Izhevsk State Medical Academy

Email: biochem2017@mail.ru
Izhevsk, the Udmurt Republic, Russian Federation

References

  1. Дедов И.И. Сахарный диабет: развитие технологий в диагностике, лечении и профилактике. Сахарный диабет. 2010; 3: 6-13.
  2. Erdal N., Gürgül S., Demirel C., Yildiz A. The effect of insulin therapy on biomechanical deterioration of bone in streptozotocin (STZ)-induced type 1 diabetes mellitus in rats. Diabetes Res Clin Pract. 2012; 97 (3): 461-7. https://doi.org/10.10Wj.dia-bres.2012.03.005
  3. Jiao H., Xiao E., Graves D.T. Diabetes and Its Effect on Bone and Fracture Healing. Curr Osteoporos Rep. 2015; 13 (5): 327-35. https://doi.org/10.1007/s11914-015-0286-8.
  4. Vestergaard P Diabetes and Bone. Diabetes Metab. 2011; 1. http:/dx.doi. org/10.4172/2155-6156.S1-001
  5. Nyman J.S., Even J.L., Jo C.H., Herbert E.G., Murry M.R., Cockrell G.E., Wahl E.C., Bunn R.C., Lumpkin C.K.Jr., Fowlkes J.L., Thrailkill K.M. Increasing duration of type 1 diabetes perturbs the strengthstructure relationship and increases brittleness of bone. Bone. 2011; 48 (4): 733-40. https://doi. org/10.1016/j.bone.2010.12.016
  6. Weber D.R., Haynes K., Leonard M.B., Willi S.M., Denburg M.R. Type 1 diabetes is associated with an increased risk of fracture across the life span: A population-based cohort study using the health improvement network (THIN). Diabetes Care. 2015; 38 (10): 1913-20. https://doi.org/10.2337/dc15-0783.
  7. Wang J., You W., Jing Z., Wang R., Fu Z., Wang Y. Increased risk of vertebral fracture in patients with diabetes: a meta-analysis of cohort studies. Int Orthop. 2016; 40 (6): 1299-307. https://doi.org/10.1007/s00264- 016-3146-y.
  8. Vashishth D. The Role of the Collagen Matrix in Skeletal Fragility. Curr Osteoporosis Rep. 2007; 5 (2): 62-6. https://doi. org/10.1007/s11914-007-0004-2.
  9. Nudelman F., Lausch A.J., Sommerdijk N.A.J.M., Sone E.D. In vitro models of collagen biomineralization. J. Struct. Biol. 2013; 183 (2): 258-69. https://doi.org/10.10Wj. jsb.2013.04.003.
  10. Пальчикова Н.А., Кузнецова Н.В., Кузминова О.И., Селятицкая В.Г Гормонально-биохимические особенности аллоксановой и стрептозотоциновой моделей экспериментального диабета. Бюллетень СО РАМН. 2013; 33 (6): 18-24.
  11. Шараев П.Н., Сахабутдинова Е.П., Лекомцева О.И., Кошикова С.В. Определение свободного и пептидосвязанного гидроксипролина в сыворотке крови. Клин. лаб. диагностика. 2009; 1: 7-9.
  12. Прошина Л.Я., Приваленко М.Н. Исследование фракционного состава коллагена в ткани печени. Вопросы мед химии. 1982; 1: 115-9.
  13. Резников А.Г. Методы определения гормонов. Киев: Наукова думка; 1980; 399.
  14. Starup-Linde J., Vestergaard P Biochemical bone turnover markers in diabetes mellitus - A systematic review. Bone. 2016; 82: 69-78. https://doi.org/10.10Wj. bone.2015.02.019.
  15. Омельяненко Н.П., Слуцкий Л.И. Соединительная ткань (гистофизиология и биохимия). Под ред. С.П. Миронова. М.: Известия, 2009; 1: 380.
  16. Yang J., Zhang X., Wang W, Liu J. Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem Funct. 2010; 28 (4): 334-41. https://doi.org/10.1002/cbf.1668
  17. Garcia-Hernandez A., Arzate H., Gil-Chavarria I., Rojo R., Moreno-Fierros L. High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone. 2012; 50 (1): 276-88. https://doi. org/10.1016/j.bone.2011.10.032
  18. Dong X. N., Qin A., Xu J., Wang X. In situ accumulation of advanced glycation endproducts (AGEs) in bone matrix and its correlation with osteoclastic bone resorption. Bone. 2011; 49: 174-83. https://doi. org/10.1016/j.bone.2011.04.009
  19. Compston J. Glucocorticoid-induced osteoporosis: an update. Endocrine. 2018; 61 (1): 7-16. https://doi.org/0.1007/s12020-018-1588-2
  20. Thrailkill K.M., Fowlkes J.L. The role of vitamin D in the metabolic homeostasis of diabetic bone. Clin. Rev Bone Miner Metab. 2013; (1): 28-37. https://doi.org/10.1007/ s12018-012-9127-9
  21. Wahl P, Xie H., Scialla J., Anderson C.A.M., Bellovich K., Brecklin C., Chen J., Feldman H., Gutierrez O.M., Lash J., Leonard M.B., Negrea L., Rosas S.E., Anderson A.H., Townsend R.R., Wolf M., Isakova T. Earlier onset and greater severity of disordered mineral metabolism in diabetic patients with chronic kidney disease. Diabetes Care. 2012; 35 (5): 994-1001. https://doi. org/10.2337/dc11-2235

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies