Актуальность и перспективы персонализированного подхода к изменению функциональной активности иммунной системы на основе микронутриентов


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В обзорной статье рассмотрены принципы персонализированного подхода изменения функциональной активности иммунной системы на основе микронутриентов. Продемонстрировано, что активность клеток иммунной системы зависит от уровня обеспеченности организма не только макро-, но и микронутриентами - витаминами и микроэлементами. Учитывая особые потребности иммунной системы в микронутриентах, оценка их адекватного уровня является важным шагом развития принципов персонализированной медицины. Измерение уровня микронутриентов перспективно проводить с помощью метаболомных технологий. В статье рассмотрена роль и значение для функционирования иммунной системы следующих микронутриентов: жирорастворимых витаминов - A, D, E, K, водорастворимых витаминов - В1, В, В, В5, В, В9, В12, витамина С и микроэлементов - селена, цинка, меди, магния и марганца. Обоснованность назначения пациенту микронутриентов должно базироваться на анализе индивидуального профиля этих веществ у пациента. Подобный подход, лежащий в основе персонализированной медицины, позволит не только повысить эффективность и безопасность профилактических и медикаментозных мер, но и сократить расходы на дорогостоящие процедуры, применяя их только у целевых групп. Персонализированная медицина способна существенно повысить качество и улучшить результаты лечения, ее рассматривают как важнейшее направление развития клинической медицины.

Полный текст

Доступ закрыт

Об авторах

В. В Юрасов

Научно-лабораторный комплекс «Chromolab»

кандидат медицинских наук

А. Р Садыков

Научно-лабораторный комплекс «Chromolab»

И. В Золкина

Научно-исследовательский клинический институт педиатрии им. акад. Ю.Е. Вельтищева ФГБОУВО РНИМУ им. Н.И. Пирогова Минздрава России

кандидат биологических наук

Н. Р Хасбиуллина

Научно-лабораторный комплекс «Chromolab»

Email: n.hasbiullina@chromolab.ru
кандидат биологических наук

П. Б Глаговский

ФГБОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России

Научно-исследовательский институт цереброваскулярной патологии и инсульта

И. С Мамедов

ФГБОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России

кандидат медицинских наук

М. А Пальцев

Научно-лабораторный комплекс «Chromolab»; ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»

академик РАН, профессор

Список литературы

  1. Белушкина Н.Н., Чемезов А.С., Пальцев М.А. Персонализированная медицина: от идеи до внедрения в практическое здравоохранение. Молекулярная медицина. 2018; 16 (3): 9-15. https://doi. org/10.29296/24999490-2018-03-02
  2. Пальцев М.А., Чемезов А.С., Линькова Н.С., Дробинцева А.О, Полякова В.О., Белушкина Н.Н., Кветной И.М. Омиксные технологии: роль и значение для развития персонализированной медицины. Молекулярная медицина. 2019; 17 (4): 3-8. https://doi.org/10.29296/24999490 2019-04-01
  3. Mora J.R., Iwata M., von Andrian U.H. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol. 2008; 8 (9): 685-98. https:// doi.org/10.1038/nri2378.
  4. Monastra G., De Grazia S., De Luca L., Vittorio S., Unfer V. Vitamin D: a steroid hormone with progesterone-like activity. Eur Rev Med Pharmacol Sci. 2018; 22 (8): 2502-12. https://doi.org/10.26355/eur-rev_201804_14845.
  5. Mohty M., S. Morbelli D., Isnardon D., Sainty C. Arnoulet B., Gaugler D. All-trans retinoic acid skews monocyte differentiation into interleukin-12-secreting dendritic-like cells. Br. J. Haematol. 2003; 122: 829-36. https:// doi.org/10.1046/j.1365-2141.2003.04489.x.
  6. Motomura K., M. Ohata M. Satre, H. Tsukamoto. Destabilization of TNF-alpha mRNA by retinoic acid in hepatic macrophages: implications for alcoholic liver disease. Am. J. Physiol. Endocrinol. Metab. 2001; 281: 420-9. https://doi.org/10.1152/ ajpendo.2001.281.3.E420.
  7. Bhaskaram P. Micronutrient Malnutrition, Infection, and Immunity: an Overview Nutrition Reviews. 2002; 60 (5): 40-5. https:// doi.org/10.1301/00296640260130722.
  8. Pino-Lagos K., Benson M.J., Noelle R.J. Retinoic Acid in the Immune System. Ann. N. York Acad. Sc. 2008; 1143 (1): 170-87. https://doi.org/10.1196/annals.1443.017.
  9. Kunisawa J., Kiyono H. Vitamin-mediated regulation of intestinal immunity. Front Immunol. 2013; 4: 189. https://doi. org/10.3389/fimmu.2013.00189.
  10. VanEtten E., Mathieu C. Immunoregulation by 1,25-dihydroxvitamin D3: basic concepts. J. Steroid Biochem. 2005; 97: 93-101. https:// doi.org/10.1016/j.jsbmb.2005.06.002.
  11. Beard J.A., Bearden A., Strike R. Vitamin D and the anti-viral state. J Clin Virol. 2011; 50: 194-200. https://doi.org/10.10Wj. jcv.2010.12.006
  12. Hansdottir S., Monick M.M., Hinde S.L., Lovan N., Look D.C., Hunninghake G.W Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J. Immunol. 2008; 181: 7090-9. https://doi.org/10.4049/jimmu-nol.181.10.7090
  13. Yamshchikov A., Desai N., Blumberg H., Ziegler T, Tangpricha V. Vitamin D for Treatment and Prevention of Infectious Diseases: A Systematic Review of Randomized Controlled Trials. Endocr Pract. 2009; 15 (5): 438-49. https://doi.org/10.4158/EP09101.ORR.
  14. Pender M.P. CD8+ T-Cell Deficiency, Epstein-Barr Virus Infection, Vitamin D Deficiency, and Steps to Autoimmunity: A Unifying Hypothesis. Autoimmune Dis. 2012; 189096: 1-16. https://doi. org/10.1155/2012/189096.
  15. Iruretagoyena M., Hirigoyen D., Naves R, Burgos PI. Immune Response Modulation by Vitamin D: Role in Systemic Lupus Erythematosus. Front Immunol. 2015; 6: 513. https://doi.org/10.3389/fimmu.2015.00513.
  16. Wang X., Quinn P.J. The location and function of vitamin E in membranes (Review). Molecular Membrane Biology 2000; 17 (3): 143-56. https://doi. org/10.1080/09687680010000311.
  17. Rizvi S., Raza S.T., Ahmed F., Ahmad A., Abbas S., Mahdi F. The role of vitamin e in human health and some diseases. Sultan Qaboos Univ Med J. 2014; 14 (2): 157-65.
  18. Rall L.C., Meydani S.N. Vitamin B6 and immune competence. Nutr Rev 1993; 51: 217-25. https://doi. org/10.1111/j.1753-4887.1993.tb03109.x.
  19. Han S.N., Meydani M., Wu D. et al. Effect of longterm dietary antioxidant supplementation on influenza virus infection. J. Gerontol. 2000; 55A: 496-503. https://doi. org/10.1093/gerona/55.10.b496.
  20. Ohsaki Y., Shirakawa H., Hiwatashi K., Furukawa Y., Mizutani T, Komai M. Vitamin K suppresses lipopolysaccharide-induced inflammation in the rat. Biosci Biotechnol Biochem. 2006; 70 (4): 926-32. https://doi. org/10.1016/j.jnutbio.2009.09.011.
  21. Checker R., Sharma D., Sandur S.K., Khan N.M., Patwardhan R.S., Kohli V, et al. Vitamin K3 suppressed inflammatory and immune responses in a redoxdepend-ent manner. Free Radic Res. 2011; 45 (8): 975-85. https://doi.org/10.3109/10715762.2 011.585647.
  22. Hatanaka H., Ishizawa H., Nakamura Y, Tadokoro H., Tanaka S., Onda K., et al. Effects of vitamin K 3 and K 5 on proliferation, cytokine production, and regulatory T cell-frequency in human peripheral blood mononuclear cells. Life Sci. 2014; 99 (1): 61 8. https://doi.org/10.10Wj.lfs.2014.01.068
  23. Spinas E., Saggini A., Kritas S.K., Cerulli G., Caraffa A. et al. Crosstalk between vitamin B and immunity. J. Biol. Regul Homeost Agents. 2015; 29 (2): 283-8.
  24. Si Y, Zhang Y, Zhao J., Guo S., Zhai L., Yao S.,.. Qin, S. Niacin Inhibits Vascular Inflammation via Downregulating Nuclear Transcription Factor-кВ Signaling Pathway Mediators of Inflammation. 2014; 1 (12). https://doi.org/10.1155/2014/263786
  25. Mikkelsen K., Apostolopoulos V. Vitamin B1, B2, B3, B5, and B6 and the Immune System. In: Mahmoudi M., Rezaei N. (eds) Nutrition and Immunity. Springer, Cham. 2019; 115-25.
  26. Gay R., Meydani S. N. The Effects of Vitamin E, Vitamin B6, and Vitamin B12 on Immune Function. Nutrition in Clinical Care. 2001; 4(4): 188-198. doi.org/10.1046/j.1523-5408.2001.00142.x.
  27. Simanjuntak Y, Ko H.-Y, Lee Y-L., Yu G.-Y, Lin Y.-L. Preventive effects of folic acid on Zika virus-associated poor pregnancy outcomes in immunocompromised mice. PLOS Pathogens. 2020; 16 (5): e1008521. https://doi.org/10.1371/journal. ppat.1008521.
  28. Fata FT., Herzlich B.C., Schiffman G., Ast A.L. Impaired antibody response to pneumococcal polysaccharide in elderly patients with low serum vitamin B12 levels. Ann Intern Med. 1996; 124: 299-304. https://doi. org/10.7326/0003-4819-124-3-199602010 00003.
  29. Carr A.C., Maggini S. Vitamin C and Immune Function. Nutrients. 2017; 9: 1211. https://doi.org/10.3390/nu9111211.
  30. Amir A.B., Ghobadi S. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Sci. 2016; 146: 163-73. https://doi. org/10.1016/j.lfs.2016.01.014.
  31. Rayman M.P The importance of selenium to human health. Lancet. 2000; 356 (9225): 233-41. https://doi.org/10.1016/S0140-6736(00)02490-9.
  32. Baum M.K., Shor-Posner G., Lai S., Campa A.M., Trapido E. High risk of HIV-related mor tality is associated with selenium deficiency. J Acquir Immune Defic Syndr. 1997; 15, 370-4. https://doi.org/10.1097/00042560-199708150-00007
  33. El-Bayoumi K. The protective role of selenium on genetic damage and on cancer. Mutat.Res. 2001; 475, 123-39. https://doi. org/10.1016/S0027-5107(01)00075-6.
  34. Jiang C., Jiang W, Ip C., Ganther H., Lu J. Selenium-induced inhibition of angiogen-esis in mammary cancer at chemopre-ventive levels of intake. Mol. Carcinogen. 1999; 26: 213-25. https://doi.org/10.1002/ (sici)1098-2744(199912)26:4<213::aid-mc1>3.0.co;2-z.
  35. Beck M.A. Selenium and Vitamin E Status: Impact on Viral Pathogenicity. Nutr. 2007; 137: 1338-40. https://doi.org/10.1093/ jn/137.5.1338.
  36. Beck M.A., Levander O.A., Handy J. Selenium Deficiency and Viral Infection. J. Nutr. 2003; 133 (5): 1463-7. https://doi. org/10.1093/jn/133.5.1463S.
  37. Jaspers I., Zhang W., Brighton L. E., Carson J. L., Styblo M., Beck M. A. Selenium deficiency alters epithelial cell morphology and responses to influenza. Free Radic Biol Med. 2007; 42 (12): 1826-37. https://doi. org/10.1016/j.freeradbiomed.2007.03.017.
  38. Ferencik M., Ebringer, L. Modulatory effects of selenium and zinc on the immune system. Folia Microbiologica. 2003; 48 (3): 417-26. https://doi.org/10.1007/ BF02931378.
  39. Terpilowska S., Siwicki A.K. The role of selected microelements: selenium, zinc, chromium and iron in immune system. Central European Journal of Immunology. 2011; 36 (4): 303-7.
  40. World Health Organization. Zinc. In Trace Elements in Human Nutrition and Health. Geneva: WHO, 1996: 72-104.
  41. Hojyo S., Fukada T. Roles of Zinc Signaling in the Immune System. J. Immunol Res. 2016; 2016: 6762343. https://doi. org/10.1155/2016/6762343.
  42. Gammoh N.Z., Rink L. Zinc in Infection and Inflammation. Nutrients. 2017; 9 (6): 624. https://doi.org/10.3390/nu9060624.
  43. Jaiser S.R., Winston G.P Copper deficiency myelopathy J. Neurol. 2010; 257: 869-81. https://doi.org/10.1007/s00415-010-5511-x.
  44. Bonham M., O'Connor J.M., Hannigan B.M., Strain J.J. The immune system as aphysiological indicator of marginal cop per status? Br. J. Nutr. 2002; 87 (5): 393-403. https://doi.org/10.1079/BJNBJN2002558.
  45. Uriu-Adams J.Y, Keen C.L. Copper, oxidative stress, and human health. Mol Aspects Med. 2005; 26 (4-5): 268-98. https://doi. org/10.1016/j.mam.2005.07.015.
  46. Turnlund J.R., Jacob R.A., Keen C.L., Strain J.J., Kelley D.S., Domek J.M. Long-term high copper intake: effects on indexes of copper status, antioxidant status, and immune function in young men. Am. J. Clin. Nutr. 2004; 79 (6): 1037-44. https://doi. org/10.1093/ajcn/79.6.1037.
  47. Borkow G., Gabbay J. Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections. Current Chemical Biology 2009; 3: 272-8. https://doi. org/10.2174/187231309789054887.
  48. Gunter T. The biochemical function of Mg2+ in insulin secretion, insulin signal transduction and insulin resistance. Magnes Res. 2010; 23 (1): 5-18. https://doi.org/10.1684/ mrh.2009.0195.
  49. Libako P, Nowacki W, Rock E., Rayssiguier Y, Mazur A. Phagocyte priming by low magnesium status: input to the enhanced inflammatory and oxidative stress responses. Magnes Res. 2010; 23 (1): 1-4. https:// doi.org/10.1684/mrh.2009.0201.
  50. Sugimoto J., Romani A.M., Valentin-Torres A.M., Luciano A.A., Ramirez Kitchen C.M., Funderburg N., Mesiano S., Bernstein H.B. Magnesium Decreases Inflammatory Cytokine Production: A Novel Innate Immunomodulatory Mechanism. J. Immunol. 2012; 188 (12): 6338-46. https://doi. org/10.4049/jimmunol.1101765.
  51. Corbin B.D., Seeley E.H., Raab A., Feldmann J., Miller M.R. et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science. 2008; 319: 962-5. https:// doi.org/10.1126/science.1152449.
  52. Aschner J.L., Aschner M. Nutritional aspects of manganese homeostasis. Mol. Aspects Med. 2005; 26: 353-62. https://doi. org/10.1016/j.mam.2005.07.003.
  53. Kehl-Fie T.E., Skaar E.P Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol. 2010; 14 (2): 218-24. https://doi.org/10.10Wj.cbpa.2009.11.008.
  54. Gombart A.F., Pierre A., Maggini S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020; 12 (236). https://doi.org/10.3390/nu12010236.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ИД "Русский врач", 2020