Features of iron exchange in patients with lung tuberculosis (review of literature)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Iron is an essential trace element not only for the human body, but also for some microorganisms, including mycobacterium tuberculosis. Being strict aerobes, mycobacteria receive iron from the human body using the siderophore transporter system. Iron deficiency is the most common micronutrient deficiency. A healthy person contains an average of 3-5 grams of iron, which plays a key role in many metabolic processes. At the cellular level, iron is necessary for the functioning of enzymes involved in the biosynthesis of nucleic acids, the depletion of the intracellular iron pool leads to cell apoptosis. More than 20 proteins involved in the metabolism of iron and the maintenance of its homeostasis have been described. The most important are transferrin and its receptors, ferritin, ferroportin and other transporter proteins, ferroxidases. According to the literature, patients with tuberculosis are characterized by the development of anemia of chronic diseases and an increase in the level of hepcidin, as well as ferritin and lactoferrin in the blood serum. The problem of the effect of mycobacteria on the indicators of iron metabolism in the human body remains insufficiently studied and relevant, since the identification of the processes of iron production and assimilation by mycobacteria that remain unknown will open up the possibility of influencing these processes in order to develop new methods for treating tuberculosis patients.

Full Text

Restricted Access

About the authors

E. A Borodulina

Samara State Medical University, Ministry of Health of the Russian Federation

Email: elena130894@mail.ru
Head of the Department of Phthisiology and Pulmonology SSMU, Professor, D.Sc. of Medical Sciences Chapaevskaya str., 89, Samara, 443099, Russian Federation

E. V Yakovleva

Samara State Medical University, Ministry of Health of the Russian Federation

Email: elena130894@mail.ru
Postgraduate at the Department of Phthisiology and Pulmonology Chapaevskaya str., 89, Samara, 443099, Russian Federation

References

  1. Khare G., Nangpal P., Tyagi A.K. Differential Roles of Iron Storage Proteins in Maintaining the Iron Homeostasis in Mycobacterium tuberculosis. PLoS One. 2017; 6 (1): 90-8. https://doi.org/10.1371/journal. pone.0169545.
  2. Isanaka S., Mugusi F., Urassa W, Willett W.C., Bosch R.J., Villamor E. Iron deficiency and anemia predict mortality in patients with tuberculosis. J. Nutr. 2012; 142 (2): 350-7. https://doi.org/10.3945/jn.111.144287
  3. Minchella P.A., Donkor S., McDermid J.M., Sutherland J.S. Iron homeostasis and progression to pulmonary tuberculosis disease among household contacts. Tuberculosis (Edinb). 2015; 95 (3): 288-93. https://doi. org/10.1016/j.tube
  4. Kerkhoff A.D., Meintjes G., Burton R., Vogt M., Wood R., Lawn S.D. Relationship between blood concentrations of hepcidin and anemia severity, mycobacterial burden, and mortality among patients with HIV-associated tuberculosis. InfectDis. 2016; 213 (1): 61-70. https://doi. org/10.1093/infdis/jiv364
  5. Oliveira M.G., Delogo K.N., Oliveira H.M., Ruffino-Netto A., Kritski A.L., Oliveira M.M. Anemia in hospitalized patients with pulmonary tuberculosis. Bras Pneumol. 2014; 40 (4): 403-10. https://doi.org/10.1590/s1806-37132014000400008
  6. Soares M.P, Hamza I. Macrophages and iron metabolism. Immunity. 2016; 44 (3): 492-504. https://doi.org/10.1016/j.immuni.2016.02.016
  7. Lee S.W, Kang Y.A., Yoon Y.S., Um S.W, Lee S.M., Yoo C.G. The prevalence and evolution of anemia associated with tuberculosis. J. Korean Med Sci. 2006; 21 (6): 1028-32. https://doi.org/10.3346/jkms.2006.216.1028
  8. Кузнецов И.А., Расулов М.М., Искакова Ж.Т Железосодержащие белки - лактоферрин и ферритин - в биологических средах больных туберкулезом легких. Бюллетень экспериментальной биологии и медицины. 2012; 154 (11): 572-6.
  9. Демихов В.Г., Инякова Н.В., Кравцова Н.Б., Смирнова Т.А., Долженко Е.Н., Морщакова Е.Ф. Использование рекомбинантного эритропоэтина для лечения анемии при туберкулезе легких (пилотное исследование). Туберкулез и болезни легких. 2011; 88 (11): 26-30
  10. Abreu R., Quinn F., Giri P.K. Role of the hepcidin-ferroportin axis in pathogen-mediated intracellular iron sequestration in human phagocytic cells. Blood Adv. 2018; 22 (10): 1089-100. https://doi.org/10.1182/ bloodadvances.2017015255.
  11. Sritharan M. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake. J. Bacteriol. 2016; 2: 18-22. https://doi. org/10.1128/JB.00359-16
  12. Обухова Л.М., Алиев А.В., Евдокимов И.И., Шпрыков А.С., Коробов А.А. Макро-и микроэлементы плазмы крови при туберкулезе легких. Наука молодых - Eruditio Juvenium. 2017; 5 (3): 370-81. https:// doi.org/10.23888/HMJ20173370-381
  13. Hprykov A.S., Korobov A.A. Macro-and microelements of blood plasma in pulmonary tuberculosis. Nauka molodyh - Eruditio Juvenium. 2017; 5 (3): 370-81 https://doi.org/10.23888/HMJ20173370-381
  14. Бородулина Е.А., Скопцова Н.В., Бородулин Б.Е., Амосова Е.А., Поваляева Л.В. Сложности диагностики туберкулеза. Врач. 2018; 29 (2): 30-2.
  15. Drakesmith H., Prentice A.M. Hepcidin and the iron-infection axis. Science. 2012; 338: 768-772. https://doi.org/10.1126/science.1224577
  16. Javaheri-Kermani M., Farazmandfar T., Ajami A., Yazdani Y Scand. Impact of hepcidin antimicrobial peptide on iron overload in tuberculosis patients. J. Infect. Dis. 2014; 46 (10): 693-6. https://doi.org/10. 3109/00365548.2014.929736.
  17. Sahiratmadja E., Wieringa F.T., van Crevel R., de Visser A.W, Adnan I., Alisjahbana B. Iron deficiency and NRAMP1 polymorphisms (INT4, D543N and 3'UTR) do not contribute to severity of anaemia in tuberculosis in the Indonesian population. Br. J. Nutr. 2007; 98 (4): 684-90. https://doi. org/10.1017/S0007114507742691.
  18. Cassat J.E., Skaar E.P Iron in infection and immunity. Cell Host Microbe. 2013; 509-19. https://doi.org/10.1016/]. chom.2013.04.010
  19. Блиндарь В.Н., Зубрихина Г.Н., Матвеева И.И. Анемический синдром и основные метаболиты феррокинетики (ферритин, растворимый рецептор трансферрина, прогепсидин, гепсидин-25 и эндогенный эритропоэтин). Медицинский алфавит. 2015; 2 (8): 16-9.
  20. Вдоушкина Е.С., Бородулина Е.А., Калинкин А.В., Рогожкин П.В. Туберкулез у больных ВИЧ-инфекцией в регионе с высоким распространением ВИЧ. Туберкулез и болезни легких. 2018; 96 (12): 64-5. https://doi.org/10.21292/2075-1230-2018-96-12-64-65
  21. Малышева О.К., Андржеюк Н.И., Фокеева И.Н., Молодык А.А. Способ дифференциальной диагностики туберкулеза легких. Патент на изобретение RUS 2027191 29.12.1990
  22. Инякова Н.В., Демихов В.Г., Ефимов Е.А., Самохина Т.А., Морщакова Е.Ф. ^стояние эритропоэза при анемиях у детей с туберкулезной инфекцией. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2012; 11 (1): 5-8
  23. Roberts P.D., Hoffbrand A.V., Mollin D.L. Iron and folate metabolism in tuberculosis. BrMed J. 2006; 7:198-202. https://doi. org/10.1136/bmj.2.5507.198.
  24. D'Souza B., Sinha S., Manjrekar P., D'Souza V Hyperferritinemia in pulmonary tuberculosis. Indian J. Clin Biochem. 2013; 28 (3): 309-10. https://doi.org/10.1007/s12291-012-0289-5.
  25. Puxeddu E., Comandini A., Cavalli F., Pezzuto G., D'Ambrosio C., Senis L. Iron laden macrophages in idiopathic pulmonary fibrosis: the telltale of occult alveolar hemorrhage? PulmPharmacolTher. 2014; 28 (1): 35-40. https://doi.org/10.10Wj. pupt.2013.12.002
  26. Зенков Н.К., Чечушков А.В., Кожин П.М., Колпакова Т.А., Меньщикова Е.Б. Макрофаг и микобактерия: война без начала и конца. Успехи современной биологии. 2015; 135 (6): 554-74.
  27. Оськин Д.Н., Варнавский А.Н. Характер влияния туберкулеза и гепатита на некоторые гематологические показатели. Земский врач. 2017; 1: 31-3
  28. Лямин А.В., Халиулин А.В., Исматуллин Д.Д., Козлов А.В., Балдина О.А. Железо как эссенциальный фактор роста микобактерий. Известия Самарского научного центра Российской академии наук. 2016; 18 (5): 320-7
  29. Visser A., van de Vyver A. Severe hyperfer-ritinemia in Mycobacteria tuberculosis infection. Clin Infect Dis. 2011; 52 (2): 273-4. https://doi.org/10.1093/cid/ciq126.
  30. Thom R.E., Elmore M.J., Williams A., Andrews S.C., Drobniewski F, Marsh P.D., Tree J.A. The expression of ferritin, lactoferrin, transferrin receptor and solute carrier family 11A1 in the host response to BCG-vaccination and Mycobacterium tuberculosis challenge. Vaccine. 2012; 30 (21): 3159-68. https://doi. org/10.1016/j.vaccine.2012.03.008.
  31. Domingo-Gonzalez R., Prince O., Cooper A., Khader S.A. Cytokines and chemokines in Mycobacterium tuberculosis infection. Microbiol Spectr. 2016; 4 (5): 1-7. https:// doi.org/10.1128/microbiolspec.TBTB2-0018-2016
  32. Добин В.Л., Демихов В.Г, Жарикова М.П. Обмен железа у микобактерий. Туберкулез и болезни легких. 2016; 94 (7): 6-10. https://doi.org/10.21292/2075-1230- 2016-94-7-6-10

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies