Relationship between oxidative protein modification and the activity of lysosomal cysteine proteinases in blood plasma and leukocytes in Alzheimer’s disease


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Revealing the relationship between the severity of oxidative stress and the activity of cathepsins in tissues (plasma and blood cells) readily available for the diagnosis of Alzheimer’s disease can be useful for understanding the pathogenesis of the disease, early diagnosis, and monitoring the course of pathology. The aim of the study: identification of correlations between the level of oxidative modification of proteins and the activity of lysosomal cysteine proteinases in plasma and leukocytes in patients with Alzheimer’s disease in comparison with similar indices in patients without signs of neurodegeneration. Methods. Spectrophotometric determination of the level of carbonyl derivatives of proteins, spectrofluorometric determination of the activity of lysosomal cysteine cathepsins, analysis of correlations between indices in plasma and leukocytes (polymorphonuclear and mononuclear) both in patients with Alzheimer’s disease, and patients without signs of neurodegeneration. Results. In leukocytes in Alzheimer’s disease, a moderate negative correlation was found between the activity of cathepsin H and the level of products of oxidative protein modification. In patients with vascular dementia, a pronounced negative correlation between cathepsin B and L in polymorphonuclear leukocytes was found. A similar trend was observed in the comparison group (patients without signs of dementia and neurodegeneration). Also, in this group, a moderate positive correlation was found between the activity of cathepsin L and the level of markers of oxidative stress in blood plasma. Based on the results were made the following conclusions: • Between the activity of cathepsin H and the level of oxidative modification of proteins, a moderate negative correlation was revealed in leukocytes of patients with Alzheimer’s disease. • The activity of cathepsins B and L negatively correlates with the level of oxidative modification of proteins in polymorphonuclear leukocytes of patients with vascular dementia and cases ts without signs dementia and neurodegeneration. • The activity of cathepsin L is in direct proportion to the level of oxidative modification of the protein in the blood plasma of patients without signs of dementia and neurodegeneration.

Full Text

Restricted Access

About the authors

M. G Engalycheva

Ryazan State Medical University

Email: mariyanaaber@yandex.ru
Assistant of the Department of Biological Chemistry Ryazan State Medical University Ryazan State Medical University Vysokovoltnaya str., 9, Ryazan, 390026, Russian Federation

N. V Korotkova

Ryazan State Medical University

Email: fnv8@yandex.ru
Associate Professor of the Department of Biological Chemistry Ryazan State Medical University Ryazan State Medical University, PhD. Vysokovoltnaya str., 9, Ryazan, 390026, Russian Federation

D. S Petrov

Ryazan State Medical University

Email: petrovds@list.ru
Head of the Department of Psychiatry and Psychotherapy, Faculty of Additional Professional Education Ryazan State Medical University, DM, Professor. Vysokovoltnaya str., 9, Ryazan, 390026, Russian Federation

V. A Sokolov

Ryazan State Medical University

Email: sva_sva@mail.ru
Professor of the Department of Eye Diseases Ryazan State Medical University, DM, Professor. Vysokovoltnaya str., 9, Ryazan, 390026, Russian Federation

A. N Ryabkov

Ryazan State Medical University

Email: kafedrafarmakologii@mail.ru
Senior Lecturer of the Department of Pharmacology with a course in Pharmacy. Ryazan State Medical University, DM, Professor. Vysokovoltnaya str., 9, Ryazan, 390026, Russian Federation

References

  1. Hook V, Yoon M., Mosier C., Ito G., Podvin S. , Head B.P, Rissman R., O'Donoghue A.J., Hook G. Cathepsin B in neurodegeneration of Alzheimer's disease, traumatic brain injury, and related brain disorders. Biochim Biophys Acta Proteins Proteom. 2020; 1868 (8): 1404-28. https://doi.org/10.10Wj. bbapap.2020.140428.
  2. Medoro A., Bartollino S., Mignogna D., Marziliano N., Porcile C., Nizzari M., Florio T. , Pagano A., Raimo G., Intrieri M., Russo C. Proteases Upregulation in Sporadic Alzheimer's Disease Brain. J. Alzheimers Dis. 2019; 68 (3): 931-8. https://doi.org/10.3233/ JAD-181284.
  3. Cermak S., Kosicek M., Mladenovic-Djordjevic A. Loss of cathepsin B and L leads to lysosomal dysfunction, NPC-like cholesterol sequestration and accumulation of the key Alzheimer's proteins. PLOS ONE. 2016; 30: 1-17. https://doi.org/10.1371/journal. pone.0167428
  4. Snir J.A., Suchy M., Bindseil G.A., Kovacs M., Chronik B.A., Hudson R.H.E., Pasternak S.H., Bartha R. An Aspartyl Cathepsin Targeted PET Agent: Application in an Alzheimer's Disease Mouse Model. J. Alzheimers Dis. 2018; 61 (3): 1241-52. https://doi. org/10.3233/JAD-170115.
  5. Tonnies E., Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease. J. Alzheimers Dis. 2017; 57 (4): 1105-21. https://doi.org/10.3233/JAD-161088.
  6. Wang X., Wang W, Li L., Perry G., Lee H.G., Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta. 2014; 1842 (8): 1240-7. htt-ps://doi.org/10.1016/j.bbadis.2013.10,015.
  7. Фомина М.А., Абаленихина Ю.В. Способ комплексной оценки содержания продуктов окислительной модификации белков в тканях и биологических жидкостях. Методические рекомендации, Рязань. 2014; 61.
  8. Калинин Р.Е., Абаленихина Ю.В., Пшенников А.С., Сучков И.А., Исаков С.А. Взаимосвязь окислительного карбонилирования белков и лизосомального протеолиза плазмы в условиях экспериментального моделирования ишемии и ишемии-реперфузии. Наука молодых - Eruditio Juvenium. 2017; 3: 338-51
  9. Подунай Ю.А., Залевская И.Н., Руднева И.И. Возрастная динамика активности катепсинов и содержания среднемолекулярных пептидов в мышцах морского ерша. Ученые записки Таврического национального университета им. В.И. Вернадского. 2009; 22 (4): 128-34
  10. Пупышев А.Б. Пермеабилизация лизосомальных мембран как апоптогенный фактор. Цитология. 2011; 53 (4): 313-24
  11. Carija A., Ventura S., Navarro S. Evaluation of the Impact of Protein Aggregation on Cellular Oxidative Stress in Yeast. J Vis Exp. 2018; 23 (136): 57470. https://doi. org/10.3791/57470.
  12. Карпищенко А.И. Медицинские лабораторные технологии: руководство по клинической лабораторной диагностике под. ред. А.И. Карпищенко. М.: ГЭОТАР-Медиа, 2013; 2: 755-62.
  13. Barrett A.J., Kirschke Н. Cathepsin B, cathepsin H, cathepsinL. Methods in Enzymol. 1981; 80: 535-61.
  14. Калинин Р.Е., Пшенников А.С., Абаленихина Ю.В., Сучков И.А., Мжаванадзе Н.Д., Исаков С.А. Катепсины как возможный способ адаптации сосудистой стенки к окислительному стрессу в условиях ишемии и реперфузии. Медицинский вестник Северного Кавказа. 2017; 2: 191-4.
  15. Муравлева Л.Е., Молотов-Лучанский В.Б., Клюев Д.А., Бакенова Р.А., Култанов Б.Ж., Танкибаева Н.А., Койков В.В., Омарова Г.А. Окислительная модификация белков: проблемы и перспективы исследования. Современные проблемы науки и образования. 2010; 1: 74-8
  16. Hao Y, Purtha W, Cortesio C., Rui H., Gu Y, Chen H., Sickmier E.A., Manzanillo P, Huang X. Crystal structures of human procathepsin H. PLoS One. 2018; 13 (7): e0200374. https://doi.org/10.1371/journal. pone.0200374
  17. Tamhane T, Lllukkumbura R., Lu S., Maelandsmo G.M., Haugen M.H., Brix K. Nuclear cathepsin L activity is required for cell cycle progression of colorectal carcinoma cells. Biochimie. 2016; 122: 208-18. https:// doi.org/10.1016/j.biochi.2015.09.003.
  18. Дубинина Е.Е., Щедрина Л.В., Незнанов H. Г, Залуцкая Н.М., Захарченко Д.В. Окислительный стресс и его влияние на функциональную активность клеток при болезни Альцгеймера. Биомедицинская химия. 2015; 61 (1): 57-69.
  19. Baskin-Bey E.S., Canbay A., Bronk S.F, Werneburg N., Guicciardi M.E., Nyberg S.L., Gores G. J. Cathepsin B inactivation attenuates hepatocyte apoptosis and liver damage in steatotic livers after cold ischemia-warm reperfusion injury. Am. J. of Physiology. 2005; 288(2):396-402. https://doi.org/org/10.1152/ ajpgi.00316.2004
  20. Hishita T., Tada-Oikawa S., Tohyama K., Miura Y, Nishihara T., Tohyama Y, Yoshida Y, Uchiyama T, Kawanishi S. Caspase-3 activation by lysosomal enzymes in cytochrome c-independent apoptosis in myelodysplastic syndrome-derived cell line P39. Cancer Res. 2001; 61 (7): 2878-84. PMID: 11306462.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies