Hormone adropine: its effect on age-associated diseases


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The purpose of the review was the search and analysis of the data about hormone adropin, similar to the known hormone irisin, and its effect on the pathology, associated with aging. Adropin is expressed in many following organs as referred to CNS, in liver, kidney, heart, pancreas, jejunum, in endothelial cells, milk, foremilk. The effect of adropin is related to the regulation of energetic balance, glucose, and fatty acid metabolism. The adropin concentration is decreased with the age but is increased by the physical loading. Adropin plays a great role in CNS function and its concentration is decreased in blood and brain by the neurodegenerative diseases. Experiments in animals demonstrated, that adropin can decrease the degenerative symptoms in CNS. The adropin concentration in blood is decreased by the pathology of the cardiovascular system, by diabetes melitus, metabolic syndrome, cancer of mammary gland, and endometrium. A negative correlation is detected between the adropin concentration and arterial pressure, endothelin concentration and insulin resistance, and positive correlation between cardial troponin and natrium-uretic peptide. Adropin is beleived to play a great role in the development of pathology, associated with aging.

Full Text

Restricted Access

About the authors

Boris Ilich Kuznik

Chita State Medical Academy; Clinic of the Academy of Health Innovation

Email: bi_kuznik@mail.ru
Head the Department of normal physiology; Doctor of medical sciences, professor. Gorkogo str. 39a, Chita, 672090, Russian Federation; Kokhanskogo str., 13, Chita, 672000, Russian Federation

Natalia Iosifovna Chalisova

Pavlov Institute of Physiology RAS; St. Petersburg Institute of Bioregulation and Gerontology

Email: ni_chalisova@mail.ru
Expert scientific worker; Doctor of biologic sciences, professor. nab. Makarova, 6, St. Petersburg, 199034, Russian Federation; pr. Dinamo, 3, St. Petersburg, 197110, Russian Federation

References

  1. Bostrom P., Wu J., Jedrychowski, M.P., Korde A., Ye L., Lo J.C., Rasbach, K.A., Bostrom, E.A., Choi J.H., Long J.Z., Kajimura S., Zingaretti M.C., Vind B.F., Tu H., Cinti S., Hojlund K., Gygi S.P., Spiegelman B.M. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012; 7382: 463-8.
  2. Joung K.E., Park, K.H., Filippaios A., Dincer F. Christou H., Mantzoros C.S. Cord blood irisin levels are positively correlated with birth weight in newborn infants. Metabolism. 2015; 64 (11): 1507-14.
  3. Kumar K.G, Trevaskis J.L., Lam D.D., Sutton G. M., Koza R.A., Chouljenko V.N., Kousoulas K.G., Rogers P.M., Kesterson R.A., Thearle M., Ferrante A.W Jr. Mynatt R.L., Burris T.P., Dong J.Z., Halem H.A., Culler M.D., Heisler L.K., Stephens J.M., Butler A.A. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell Metab. 2008; 8 (6): 468-81.
  4. Aydin S. Three new players in energy regulation: preptin, adropin and irisin. Peptides. 2014; 56: 94-110.
  5. Кузник Б.И. Хавинсон В.Х., Давыдов С.О., Степанов А.В. Белки молодости и старости. Белки - маркеры клеточного старения и предсказатели продолжительности жизни. Palmarium, academic publishing. 2017; 285.
  6. Хавинсон В.Х., Кузник Б.И., Рыжак Г.А., Линькова Н.С., Салль Т.С., Чалисова Н.И. Ирисин, бетатрофин, сахарный диабет, ожирение и метаболический синдром. Эпигенетические механизмы регуляци. Успехи физиологических наук. 2018; 49 (1): 72-86.
  7. Кузник Б.И., Давыдов С.О., Чалисова H.И. Роль белков MANF, TIMP-2 И ИРИСИНА в старении организма. Успехи современной биологии. 2019; 139 (6): 540-51.
  8. Кузник Б.И., Давыдов С.О., Степанов A.В. Роль мышечного гормона ирисина в регуляции физиологических функций в условиях нормы и патологии. Успехи физиологических наук. 2018; 49 (4): 59-80.
  9. Marczuk N., Cecerska-Heryc E., Jesionowska A., Dotçgowska B. Adropin - physiological and pathophysiological role. Postepy Hig. Med. Dosw. (Online). 2016; 70 (9): 981-8.
  10. Butler A.A., Tam C.S., Stanhope K.L., Wolfe B.M., Ali M.R., O'Keeffe M., St-Onge M.P., Ravussin E., Havel PJ. Low circulating adropin concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans. J. Clin. Endocrinol. Metab. 2012; 97 (10): 3783-91. doi: 10.1210/jc.2012-2194.
  11. Yang C., De Mars K.M., Candelario-Jalil E. Age-Dependent Decrease in Adropin is Associated with Reduced Levels of Endothelial Nitric Oxide Synthas and Increased Oxidative Stress in the Rat Brain. Aging Dis. 2018; 9 (2): 322-30. doi: 10.14336/AD.2017.0523.
  12. Kwon O.S., Andtbacka R.H.I., Hyngstrom J.R., Richardson R.S. Vasodilatory function in human skeletal muscle feed arteries with advancing age: the role of adropin. J. Physiol. 2019; 597 (7): 1791-804. doi: 10.1113/JP277410.
  13. Zhang H., Jiang L., Yang Y.J., Ge R.K., Zhou M., Hu H., Liu H., Cui J., Li L.L., Dong Y.F., Cheng X.S., Chen R., Li P. Aerobic exercise improves endothelial function and serum adropin levels in obese adolescents independent of body weight loss. Sci. Rep. 2017; 7 (1): 17717.
  14. Fujie S., Hasegawa N., Sato K., Fujita S., Sanada K., Hamaoka T, Iemitsu M. Aerobic exercise training-induced changes in serum adropin level are associated with reduced arterial stiffness in middle-aged and older adults. Am. J. Physiol. Heart Cir. c Physiol. 2015; 309 (10): 1642-7. doi: 10.1152/ajpheart.00338.2015.
  15. Soori R., Amini A.A., Choobineh S., Eskandari A., Behjat A., Ghram A., Voltarelli F.A. Exercise attenuates myocardial fibrosis and increases angiogenesis-related molecules in the myocardium of aged rats. Arch. Physiol. Biochem. 2019; 2: 1-6.
  16. Yang C., DeMars K.M., Candelario-Jalil E. Age-Dependent Decrease in Adropin is Associated with Reduced Levels of Endothelial Nitric Oxide Synthase and Increased Oxidative Stress in the Rat Brain. Aging Dis. 2018; 9 (2): 322-30. doi: 10.14336/AD.2017.0523.
  17. Wong C.M., Wang Y., Lee J.T., Huang Z., Wu D., Xu A. Adropin is a brain membrane-bound protein regulating physical activity via the NB-3/Notch signaling pathway in mice. J. Biol. Chem. 2014; 289: 25976-86.
  18. Stein L.M., Yosten G.L.C., Samson W.K. Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, gPr19. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016; 310: 476-80. doi: 10.1152/ajpregu.00511.2015.
  19. Hossain M.S., Mineno K., Katafuchi T Neuronal orphan g-protein coupled receptor proteins mediate plasmalogens-induced activation of ERK and Akt signaling. PLoS ONE. 2016; 11: e0150846. doi: 10.1371/journal.pone.0150846.
  20. Shahjouei S., Ansari S., Pourmotabbed T., Zand R. Potential Roles of Adropin in Central Nervous System: Review of Current Literature Front. Mol. Biosci. 2016; 3: 25-8.
  21. Loewen S.P., Ferguson A.V Adropin acts in the rat paraventricular nucleus to influence neuronal excitability. Am. J. Physiol Regul Integr Comp Physiol. 2017; 312: 511-9.
  22. Gao S., Mcmillan R.P., Zhu Q., Lopaschuk G.D., Hulver M.W., Butler A.A. Therapeutic effects of adropin on glucose tolerance and substrate utilization in dietinduced obese mice with insulin resistance. Mol. Metab. 2015; 4: 1-15. doi: 10.1016/j.molmet.2015.01.005.
  23. Hernandez-Guillamon M., Martinez-Saez E., Delgado P., Domingues-Montanari S., Boada C., Penalba A., et al. MMP-2/ MMP-9 plasma level and brain expression in cerebral amyloid angiopathy-associated hemorrhagic stroke. Brain Pathol. 2012; 22: 133-41. doi: 10.1111/j.1750-3639.2011.00512.
  24. Ueno M., Chiba Y., Matsumoto K., Murakami R., Fujihara R., Kawauchi M., Blood-brain barrier damage in vascular dementia. Neuropathology 2016; 36: 115-24. doi: 10.1111/neup.12262.
  25. Lovren F., Pan Y., Quan A., Singh K. K., Shukla P. C., Gupta M. Adropin is a novel regulator of endothelial function. Circulation. 2010; 122: 185-92. doi: 10.1161/CIR-CULATION 109.931782.
  26. Bolayir H.A., Kivrak Tarik, Gunes Hakan, Bolayir Asl. Adropin and circadian variation of blood pressure.Kardiol Pol. 2018; 76 (4): 776-82. PMID: 29313563.
  27. Sato K., Yamashita T., Shirai R., Shibata K., Okano T., Yamaguchi M., Mori Y., Hirano T., Watanabe T Adropin Contributes to AntiAtherosclerosis by Suppressing Monocyte-Endothelial Cell Adhesion and Smooth Muscle Cell Proliferation. J. Mol. Sci. 2018; 19 (5): 1293-7.
  28. Aydin S., Kuloglu T., Aydin S., Kalayci M., Yilmaz M., Çakmak T., Eren M.N. Elevated adropin: a candidate diagnostic marker for myocardial infarction in conjunction with troponin-I. Peptides. 2014; 58: 91-7.
  29. Yu H.Y., Zhao P., Wu M.C., Liu J., Yin W Serum adropin levels are decreased in patients with acute myocardial infarction. Regul. Pept. 2014; 190-191: 46-9.
  30. Zhang C., Zhao L., Xu W., Li J., Wang B., Gu X., Chen. J.: Correlation of serum adropin level with coronary artery disease. Zhonghua Yi Xue Za Zhi. 2014; 94: 1255-7.
  31. Ertem A.G., Sefa Ünal, Tolga Han Efe, Burak Açar, Çagri Yayla, Mevlüt Serdar Kuyumcu , Association between serum adropin level and burden of coronary artery disease in patients with non-ST elevation myocardial infarction. Anatol. J. Cardiol. 2017; 17 (2): 119-24. PMID: 27684517.
  32. Gu X., Hui Li, Xinyi Zhu, Haibo Gu, Jianchang Chen, Luchen Wang, Pamela Harding, Weiting Xu. Inverse Correlation Between Plasma Adropin and ET-1 Levels in Essential Hypertension: A Cross-Sectional Study Medicine (Baltimore). 2015; 94 (40): e1712. Clinical Trial. PMID: 26448026.
  33. Lin D., Jian Yong, Shuhua Ni, Weichao Ou, Xuerui Tan Jian Yong. Negative association between serum adropin and hypertensive disorders complicating pregnancy. Hypertens. Pregnancy 2019; 38 (4): 237-44. PMID: 31438729.
  34. Wang B., Xue Y., Shang F., Ni S., Liu X., Fan B., Wang H. Association of serum adropin with the presence of atrial fibrillation and atrial remodeling.J. Clin. Lab. Anal. 2019; 33 (2): e22672.
  35. Kalkan A.K., Huseyin Altug Cakmak, Mehmet Erturk, Kübra Erol Kalkan, Fatih Uzun, Omer Tasbulak, Vesile Ornek Diker, Suleyman Aydin Ahmet Celik Adropin and Irisin in Patients With Cardiac Cachexia. Arq. Bras. Cardiol. 2018; 111 (1): 39-47.
  36. Katuzna M., Krzysztof Pawlaczyk, Krzysztof Schwermer, Krzysztof Hoppe, Magdalena Cztapka-Matyasik, Adropin and irisin: New biomarkers of cardiac status in patients with end-stage renal disease? A preliminary study Adv Clin. Exp. Med. 2019; 28 (3): 347-53.
  37. Aydin S., Kuloglu T., Aydin S., Eren M.N., Yilmaz M., Kalayci M., Sahin I., Kocaman N., Citil C., Kendir Y Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes. Mol. Cell. Biochem. 2013; 380: 73-81. doi: 10.1007/s11010-013-1660-4.
  38. Kuloglu T., Aydin S. Immunohistochemical expressions of adropin and inducible nitric oxide synthase in renal tissues of rats with streptozotocin-induced experimental diabetes. Biotech. Histochem. 2014; 89: 10410. doi: 10.3109/10520295.2013.821713.
  39. Akcilar R., Kocak F.E., Simsek H., Akcilar A., Bayat Z., Ece E., Kokdasgil H. Antidiabetic and hypolipidemic effects of adropinin streoptozotocin-induced type 2 diabetic rats. Bratislavske Lekarske Listy 2016; 117: 100-5. doi: 10.4149/BLL.
  40. Gao S., Ghoshal S., Zhang L., Stevens J.R., McCommis K.S., Finck B.N., Lopaschuk G.D., Butler A.A. The peptide hormone adropin regulates signal transduction pathways controlling hepatic glucose metabolism in a mouse model of diet-induced obesity. J. Biol. Chem. 2019; 294: 13366-77. doi: 10.1074/jbc.RA119.008967.
  41. Butler A.A., Zhang J., Price C.A., Stevens J. R., Graham J.L., Stanhope K.L., King S., Krauss R.M., Bremer A.A., Havel P.J. Low plasma adropin concentrations increase risks of weight gain and metabolic dysregulation in response to a high-sugar diet in male nonhuman primates. Biol Chem. 2019; 294 (25): 9706-19. doi: 10.1074/jbc.RA119.007528.
  42. Chen S., Zeng K., Liu Q., Guo Z., Zhang S., Chen X.R., Lin J.H., Wen J.P., Zhao C.F., Lin X.H. F. Adropin deficiency worsens HFD-induced metabolic effect. Cell Death Dis. 2017; 8 (8): e3008. doi: 10.1038/cd-dis.2017.362.
  43. Wu L., Fang J., Chen L., Zhao Z., Luo Y., Lin C., Fan L. Low serum adropin is associated with coronary atherosclerosis in type 2 diabetic and non-diabetic patients. Clin. Chem. Lab. Med. 2014; 52: 751-8. doi: 10.1515/cclm-2013-0844
  44. Li S., Sun J., Hu W., Liu Y., Lin D., Duan H., Liu F. The association of serum and vitreous adropin concentrations with diabetic retinopathy Ann. Clin. Biochem. 2019; 56 (2):253-8. doi: 10.1177/0004563218820359.
  45. Polkowska A., Pasierowska I.E., Paslawska M., Pawluczuk E., Bossowski A. Assessment of Serum Concentrations of Adropin, Afamin, and Neudesin in Children with Type 1 Diabetes. BioMed. Res. Internat. 2019; 6128410. doi: 10.1155/2019/6128410.
  46. Thapa D., Xie B., Manning J.R., Zhang M., Stoner M.W., Huckestein B.R., Edmunds L.R., Zhang X., Dedousis N.L., O'Doherty R.M. Adropin reduces blood glucose levels in mice by limiting hepatic glucose production. Physiol. Rep. 2019; 7: e14043.
  47. Beigi Aboutaleb, Nooshin Shirzad, Fatemeh Nikpour, Ensieh Nasli Esfahani, Solaleh Emamgholipour, Fatemeh Bandarian. Association Between Serum Adropin Levels and Gestational Diabetes Mellitus. A Case-Control Study. Gynecol. Endocrinol. 2015; 31 (12): 939-41.
  48. Celik E., Yilmaz E., Celik O., Ulas M., Turkcuoglu I., Karaer A., Simsek Y., Minareci Y., Aydin S.J. Perinatal maternal and fetal adropin levels in gestational diabetes mellitus. Med. 2013; 41 (4): 375-80. doi: 10.1515/jpm-2012-0227.
  49. Jasaszwili M., Billert M., Strowski M.Z., Nowak K. W., Skrzypski M. Adropin as A Fat-Burning Hormone with Multiple Functions-Review of a Decade of Research. Molecules. 2020; 25 (3): 549-53. doi: 10.3390/molecules25030549
  50. Palizban A.A., Yazdani A.H., Jahanbani-Ardakani H. Role of rs7903146 polymorphism and adropin serum level in patients with diabetes mellitus; a case-control study from Isfahan, Iran. Arch. Physiol. Biochem. 2019; 9: 1-4. doi: 10.1080/13813455.2019.1684951
  51. Aydin S., Kuloglu T. Copeptin, Adropin and Irisin Concentrations in Breast Milk and Plasma of Healthy Women and Those With Gestational Diabetes Mellitus. Peptides. 2013; 47: 66-70.
  52. Choi H.N., Yim J.E.J. Plasma Adropin as a Potential Marker Predicting Obesity and Obesity-associated Cancer in Korean Patients With Type 2 Diabetes Mellitus. Cancer Prev 2018; 23 (4): 191-6. doi: 10.15430/JCP2018.23.4.191.
  53. Butler A.A., Tam C.S., Stanhope K.L., Wolfe B.M., Ali M.R., O'Keeffe M., St-Onge M.P., Ravussin E., Havel PJ. Low circulating adropin concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans. J. Clin. Endocrinol. Metab. 2012; 97 (10): 3783-91. doi: 10.1210/jc.2012-2194.
  54. Yosaee S., Khodadost M., Esteghamati A., Speakman J.R., Shidfar F., Nazari M.N., Bitarafan V., Djafarian K.Am. Metabolic Syndrome Patients Have Lower Levels of Adropin When Compared With Healthy Overweight/Obese and Lean Subjects J. Mens Health. 2017; 11 (2): 426-34. doi: 10.1177/1557988316664074.
  55. Korkmaz S., Sayilan Özgün, Turk G. Serum adropin levels in psoriasis vulgaris and its relation with metabolic parameters. J. Med. Sci. 2019; 49 (1): 110-5. doi: 10.3906/sag-1712-192
  56. Dogan S., Rogozina O.P., Lokshin A.E., Grande J.P., Cleary M.P Effects of chronic vs. intermittent calorie restriction on mammary tumor incidence and serum adiponectin and leptin levels in MMTV-TGF-alpha mice at different ages. Oncol. Lett. 2010; 1 (1): 167-76.
  57. Tuna B.G., Atalay P.B., Altunbek M., Kalkan B.M., Dogan S. Effects of Chronic and Intermittent Calorie Restriction on Adropin Levels in Breast Cancer. Nutr. Cancer. 2017; 69 (7): 1003-10. doi: 10.1080/01635581.2017.1359314.
  58. Nergiz S., Altinkaya S.O., Kurt Ömürlü t., Yuksel H., Küçük M., Demircan Sezer S. Circulating adropin levels in patients with endometrium cancer. Gynecol. Endocrinol. 2015; 31 (9): 730-5. doi: 10.3109/09513590.2015.1065480.
  59. Kume T., Calan M., Yilmaz O., Kocabas G.U., Yesil P., Temur M., Bicer M., Calan O.G. A possible connection between tumor necrosis factor alpha and adropin levels in polycystic ovary syndrome. J. Endocrinol. Invest. 2016; 39 (7): 747-54. doi: 10.1007/s40618-016-0453-5.
  60. Yildirim B., Celik O., Aydin S. Adropin: a key component and potential gatekeeper of metabolic disturbances in policystic ovarian syndrome. Clin. Exp. Obstet. Gynecol. 2014; 41 (3): 310-2.
  61. Encarnacion M.R., Beata B.M., Kenneth D. Causes, consequences, and reversal of immune system aging.The J. of Clinical Investigation. 2013; 123 (3): 958-65. DOI: 10.1172/ JCI64096

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies