Development of 3D structures for corneal fibroblasts


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. Advances in biology and medicine in particular in the field of cell technologies allow us to test eye stem cells as an alternative to surgical treatment of corneal pathology. An option to increase the resistance of stem cells to adverse microenvironment factors in the pathological focus can be the creation of an analog of a 3D model of the stem cell niche. The aim of the study: to study in the experiment the ability of a combination of polyethylene glycol with extracellular matrix and platelet lysate to hold corneal fibroblasts inside. Material and Methods. The biocompatibility of corneal structures and fibroblasts isolated from corneal lenticules and the viscosity of structures in vitro were evaluated. Results. Within 3-4 weeks, it is possible to grow up to 2-3'106 cells from corneal lenticules, which morphologically had a dendritic shape, and phenotypically carried markers of mesenchymal stem cells/fibroblasts on their surface. The study examined the biocompatibility of structures made of polyethylene glycol-4000 (PEG-4000), methylcellulose (MC), platelet lysate (PL), calf blood derivatives and corneal fibroblasts. It was shown that corneal fibroblasts proliferated in the presence of most of the materials used to create structures, with the exception of solcoseryl preparations in the form of gel. Structures based on PEG-4000, MC and PL kept corneal fibroblasts inside themselves and did not interfere with cell growth. Conclusion. The results obtained indicate the possibility of isolating corneal fibroblasts from a small volume of corneal material, as well as the possibility of using structures based on PEG-4000, MC and PL as a cell carrier.

全文:

受限制的访问

作者简介

Aleksander Lykov

Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics of SB RAS

Email: aplykov2@mail.ru
Leading Researcher, Candidate of Medical Sciences

Marya Surovtseva

Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics of SB RAS

Email: mfelde@ngs.ru
Senior Researcher, Candidate of Medical Sciences

Kristina Krasner

Novosibirsk Branch of S. Fyodorov Eye Microsurgery Federal State Institution

Email: k.krasner@mntk.nsk.ru
Ophthalmologist

Irina Kim

Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics of SB RAS

Email: kii5@yandex.ru
Researcher, Candidate of Medical Sciences

Nataly Bondarenko

Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics of SB RAS

Email: bond802888@yandex.ru
Junior Researcher, Candidate of Medical Sciences

Aleksandr Trunov

Novosibirsk Branch of S. Fyodorov Eye Microsurgery Federal State Institution

Email: trunov1963@yandex.ru
MD, PhD, Dr. Med. Sci., Professor, Deputy Director for Science

Valeriy Chernykh

Novosibirsk Branch of S. Fyodorov Eye Microsurgery Federal State Institution

Email: sci@mntk.nsk.ru
MD, PhD, Dr. Med. Sci., Professor, Director

Olga Poveshchenko

Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics of SB RAS

Email: poveschenkoov@yandex.ru
doctor of medical sciences, professor, Head of cell technology laboratory

参考

  1. Mathews P.M., Lindsley K., Aldave A.J., Akpek E.K. Etiology of global corneal blindness and current practices of corneal transplantation: a focused review. Cornea. 2018; 37 (9): 1198-203. https://doi.org/10.1097/ic0.0000000000001666
  2. Bremond-Gignac D., Copin H., Benkhalifa M. Corneal epithelial stem cells for corneal injury. Expert Opin Biol Ther. 2018; 18 (9): 997-1003. https://doi.org/10.1080/14712598.2018.1508443
  3. Wadhawa H., Ismail S., McGhee J.J., Werf B.V., Sherwin T. Sphere-forming corneal cells repopulate dystrophic keratoconic stroma: implications for potential therapy. World J. Stem Cells. 2020; 12 (1): 35-54. https://doi.org/10.4252/wjsc.v12.i1.35
  4. Zhou Y., Chen Y., Wang S., Qin F., Wang L. MSCs helped reduce scarrinh in the cornea after fungal infection when combined with anti-fungal treatment. BMC Ophthalmol. 2019; 19 (1): 226. https://doi.org/10.1186/s12886-019-1235-6
  5. Franchi F., Ramaswamy V., Olthoff M., Peterson K.M., Paulmurugan R., Rodriguez-Porcel M. Myocardial microenvironment modulates the biology of transplanted mesenchymal stem cells. Mol. Imaging Biol. 2020; 22 (4): 948-57. https://doi.org/10.1007/s11307-019-01470-y
  6. Khodayari S., Khodayari H., Amiri A.Z., Eslami M., Farhud D., Hescheler J., Nayernia K. Inflammatory microenvironment of acute myocardial infarction prevents regeneration of heart with stem cells therapy Cell Phisiol Biochem. 2019; 53 (5): 887-909. https://doi.org/10.33594/000000180
  7. Boutin M.E., Hampton C., Quinn R., Ferrer M., Song M.J. 3D engineering of ocular tissues for disease modeling and drug testing. Adv Exp. Med. Biol. 2019; 1186: 171-93. https://doi.org/10.1007/978-3-030-28471-8_7
  8. Becerra J., Santos-Ruiz L., Andrades J.A., Mari-Beffa M. The stem cell niche should be a key issue for cell therapy in regenerative medicine. Stem Cell Rev and Rep. 2011; 7: 248-55. https://doi.org/10.1007/s12015-010-9195-5
  9. Sekundo W., Kunert K., Russmann C., Gille A., Bissmann W., Stobrawa G., Sticker M., Bischoff M., Blum M. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results. J. Cataract Refract Surg. 2008; 34 (9): 1513-20. https://doi.org/10.1016/j.jcrs.2008.05.033
  10. Kowtharapu B., Murin R., Junemann A., Stachs O. Role of corneal stromal cells on epithelial cell function during wound healing. Int J. Mol. Sci. 2018; 19 (2): E464. https://doi.org/10.3390/ijms19020464
  11. Jester J.V., Barry-Lane P.A., Cavanagh H.D., Petroll W.M. Induction of alpha-smooth muscle actin expression and myofibroblast transformation in cultured corneal keratocytes. Cornea. 1996; 15: 505-16.
  12. Zellander A., Wardlow M., Djalilian A., Zhao C., Abiade J., Cho M. Engineering copolymeric artificial cornea with salt porogen. J. Biomed Mater Res A. 2014; 102 (6): 1799-808. https://doi.org/10.1002/jbm.a.34852
  13. Fuoco C., Salvatori M.L., Biondo A., Shapira-Schweitzer K., Santoleri S., Antonini S., Bernardini S., Tedesco F.S., Cannata S., Seliktar D., Cossu G., Gargioli C. Injectable polyethylene glycol-fibrinogen hydrogel adjuvant improves survival and differentiation of transplanted mesoangioblasts in acute and chronic skeletal-muscle degeneration. Skeletal Muscle. 2012; 2 (1): 24. https://doi.org/10.1186/2044-5040-2-24
  14. Higa K., Takeshima N., Moro F, Kawakita T., Kawashima M., Demura M., Shimazaki J., Asakura T, Tsubota K., Shimmura S. Porous silk fibroin film as a transparent carrier for cultivated corbeal epithelial sheets. J Biomater Sci Polym Ed. 2011; 22 (17): 2261-76. https://doi.org/10.1163/092050610X538218
  15. Mi S., Chen B., Wright B., Connon C.J. Ex vivo construction of an artificial ocular surface by combination of corbeal limbal epithelial cells and a compressed collagen scaffold containing keratocytes. Tissue Eng Part A. 2010; 16 (6): 2091-100. https://doi.org/10.1089/ten.TEA.2009.0748
  16. Huhtala A., Pohionen T., Salminen L., Salminen A., Kaarniranta K., Uusitalo H. In vitro biocompatibility of degrable biopolymers in cell line cultures from various ocular tissues: extraction studies. J. Mater Sci Mater Med. 2008; 19 (2): 645-9. https://doi.org/10.1002/jbm.a.31319
  17. Лыков А.П., Суровцева М.А., Повещенко О.В. Станишевская О.М., Черных Д.В., Арбеньева Н.С., Братко В.И. Лечение идиопатической возрастной макулярной дегенерации аутологичной плазмой, обогащенной лизатом тромбоцитов: проспективное исследование. Вестник РАМН. 2018; 73 (1): 40-8. https://doi.org/10.15690/vramn932
  18. Lykov A.P, Poveshchenko O.V, Bondarenko N.A., Surovtseva M.A. Therapeutic potential of fibroblast combined with platelet-rich plasma on burn skin wound healing. J. Biol Today's World. 2019; 8 (1): 1-5. https://doi.org/10.15412/JJBTW.010

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2021