A comparison of the protein composition from coronary atherosclerotic plaque at different stages of development


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background: The aim of this study was to investigate individual changes ofprotein expression in atherosclerotic plaques of coronary arteries at different stages of development of coronary atherosclerosis. Methods: The research object was homogenates of atherosclerotic plaques from coronary arteries at different stages of development (stable atherosclerotic plaques and unstable necrotic-dystrophic atherosclerotic plaques). The plaque proteins were separated by two-dimensional electrophoresis and the gel images were analyzed using PDQuest software. The amount ofprotein was determined in relative units of the intensity of staining of protein spots. The identification of protein fractions was based on peptide mass mapping by matrix-activated laser desorption ioniz.ation (MALDI). Results: Groups of proteins were identified whose expression differed more than 1.5-fold among the three stages of atherosclerotic-plaque development. At the stage of lipidosis and fibrosis in the stable plaque, the amounts of the following proteins were increased: actins, tubulin, tropomyosin, and keratin. At the fibrosis-and-calcinosis stage of the stable atherosclerotic plaque, we noted upregulation of the following proteins: microfibril-associated glycoprotein 4, mimecan, annexin A5, and peroxiredoxin-2. The unstable-plaque stage of the dystrophic necrotic type was characterized by overexpression of serum albumin, fibrinogen, serum amyloid (P component), and vimentin. Conclusion: Possible patterns of changes in protein expression were founded among three stages of development of atherosclerotic plaques of the coronary arteries when comparing individual gels and pools of homogenates of atherosclerotic plaques.

Full Text

Restricted Access

About the authors

Ekaterina Mikhailovna Stakhneva

Research Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: stahneva@yandex.ru
senior researcher in the Laboratory of Clinical Biochemical and Hormonal Research of Therapeutic Diseases

Irina Anatoljevna Meshcheryakova

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: miren@ngs.ru
engineer of the laboratory of molecular biotechnology

Evgeny Alexandrovich Demidov

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: scratch_nsu@ngs.ru
junior researcher of the laboratory of molecular biotechnology

Konstantin Viktorovich Starostin

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: kosten81@ngs.ru
junior researcher of the laboratory of molecular biotechnology

Evgeny Viktorovich Sadovski

Research Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: stinger000@mail.ru
junior researcher in the Laboratory of Clinical Biochemical and Hormonal Research of Therapeutic Diseases

Sergey Evgenjevich Peltek

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: peltek@bionet.nsc.ru
Expert scientific, head of laboratory of molecular biotechnology

Alexander Mikhailovich Chernyavskii

The Federal State Budgetary Institution «National Medical Research Center named academician E.N. Meshalkin «of the Ministry of Health of the Russian Federation

Email: amchern@mail.ru
director

Alexander Mikhailovich Volkov

The Federal State Budgetary Institution «National Medical Research Center named academician E.N. Meshalkin «of the Ministry of Health of the Russian Federation

Email: mail@meshalkin.ru
head of the Laboratory of pathomorphology

Aleksey Vitaljevich Kurguzov

The Federal State Budgetary Institution «National Medical Research Center named academician E.N. Meshalkin «of the Ministry of Health of the Russian Federation

Email: ov@mail.ru
cardiologist

Ivan Sergeevich Murashov

The Federal State Budgetary Institution «National Medical Research Center named academician E.N. Meshalkin «of the Ministry of Health of the Russian Federation

Email: ivmurashov@gmail.com
junior researcher of the Laboratory of pathomorphology

Yuliya Igorevna Ragino

Research Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: ragino@mail.ru
head, a corresponding member of the RAS

References

  1. Dubois E., Fertin M., Burdese J., Amouyel P., Bauters C., Pinet F. Cardiovascular proteomics: translational studies to develop novel biomarkers in heart failure and left ventricular remodeling. Proteomics Clin. Appl. 2011; 5 (1-2): 57-66. https://doi.org/10.1002/prca.201000056
  2. Yin X., Subramanian S., Hwang S.J., O'Donnell C.J., Fox C.S., Courchesne P, Muntendam P, Gordon N., Adourian A., Juhasz P, Larson M.G., Levy D. Protein biomarkers of new-onset cardiovascular disease: prospective study from the systems approach to biomarker research in cardiovascular disease initiative. Arterioscler. Thromb. Vasc. Biol. 2014; 34 (4): 939-45. https://doi.org/10.1161/ATVBAHA.113.302918
  3. Liang W, Ward L.J., Karlsson H., Ljunggren S.A., Li W, Lindahl M., Yuan X.M. Distinctive proteomic profiles among different regions of human carotid plaques in men and women. Sci. Rep. 2016; 6: 26231. https://doi.org/10.1038/srep26231
  4. Malaud E., Merle D., Piquer D., Molina L., Salvetat N., Rubrecht L., Dupaty E., Galea P, Cobo S., Blanc A., Saussine M., Marty-Ane C., Albat B., Meilhac O., Rieunier F, Pouzet A., Molina F, Laune D., Fareh J. Local carotid atherosclerotic plaque proteins for the identification of circulating biomarkers in coronary patients. Atherosclerosis. 2014; 233: 551-8. http://dx.doi.org/10.1016/j.atherosclerosis.2013.12.019
  5. Herrington D.M., Mao C., Parker S.J., Fu Z., Yu G., Chen L., Venkatraman V, Fu Y., Wang Y., Howard T.D., Jun G., Zhao C.F, Liu Y., Saylor G., Spivia W.R., Athas G.B., Troxclair D., Hixson J.E., Vander Heide R.S., Wang Y., Van Eyk J.E. Proteomic Architecture of Human Coronary and Aortic Atherosclerosis. Circulation. 2018; 137 (25): 2741-56. https://doi.org/10.1161/CIRCULATI0NAHA.118.034365
  6. Han Y., Zhao S., Gong Y., Hou G., Li X., Li L. Serum cyclin-dependent kinase 9 is a potential biomarker of atherosclerotic inflammation. Oncotarget. 2016; 7 (2): 1854-62. https://doi.org/10.18632/oncotarget.6443
  7. Matyushenko A.M., Koubassova N.A., Shchepkin D.V., Kopylova G.V., Nabiev S.R., Nikitina L.V., Bershitsky S.Y., Levitsky D.I., Tsaturyan A.K. The effects of cardiomyopathy-associated mutations in the head-to-tail overlap junction of α-tropomyosin on its properties and interaction with actin. Int. J. Biol. Macromol. 2019; 125: 1266-74. https://doi.org/10.1016/j.ijbiomac.2018.09.105
  8. Stintzing S., Ocker M., Hartner A., Amann K., Barbera L., Neureiter D. Differentiation patterning of vascular smooth muscle cells (VSMC) in athero sclerosis. Virchows Arch. 2009; 455: 171-85. https://doi.org/10.1007/s00428-009-0800-4
  9. Saavedra P, Girona J., Bosquet A., Guaita S., Canela N., Aragones G., Heras M., Masana L. New insights into circulating FABP4: Interaction with cytokeratin 1 on endothelial cell membranes. Bioch. Biophys. Acta. 2015; 1853 (11PtA): 2966-74. https://doi.org/10.1016/j.bbamcr.2015.09.002
  10. Kuzuya K., Ichihara S., Suzuki Y., Inoue C., Ichihara G., Kurimoto S., Oikawa S. Proteomics analysis identified peroxiredoxin 2 involved in early-phase left ventricular impairment in hamsters with cardiomyopathy PLoS One. 2018; 13 (2): e0192624. https://doi.org/10.1371/journal.pone.0192624
  11. Waksman R., Seruys P.W. Handbook of the vulnerable plaque. London: Taylor & Francis Group, 2004; 1-48.
  12. Shah P.K. Cellular and molecular mechanisms of plaque rupture. High-risk atherosclerotic plaques: mechanisms, imaging, models, and therapy. Edited by L.M. Khachigian; New York: CRC Press, 2005; 1-19.
  13. Stakhneva E.M., Meshcheryakova I.A., Demidov E.A., Starostin K.V, Sadovski E.V, Peltek S.E., Voevoda M.I., Chernyavskii A.M., Volkov A.M., Ragino Yu.I. A proteomic study of atherosclerotic plaques in men with coronary atherosclerosis. Diagnostics. 2019; 9 (4): 177. https://doi.org/10.3390/diagnostics9040177
  14. Menko A.S., Bleaken B.M., Libowitz A.A., Zhang L., Stepp M.A., Walker J.L. A central role for vimentin in regulating repair function during healing of the lens epithelium. Mol. Biol. Cell. 2014; 25 (6): 776-90. https://doi.org/10.1091/mbc.E12-12-0900
  15. Guo M., Ehrlicher A.J., Mahammad S., Fabich H., Jensen M.H., Moore J.R., Fredberg J.J., Goldman R.D., Weitz D.A. The Role of Vimentin Intermediate Filaments in Cortical and Cytoplasmic Mechanics. Biophys. J. 2013; 105 (7): 1562-8. https://doi.org/10.1016/j.bpj.2013.08.037
  16. Monico A., Duarte S., Pajares M.A., Perez-Sala D. Vimentin disruption by lipoxidation and electro-philes: Role of the cysteine residue and filament dynamics. Redox Biol. 2019; 101098. https://doi.org/10.1016/j.redox.2019.101098
  17. Hirase T, Node K. Endothelial dysfunction as a cellular mechanism for vascular failure. Am. J. Physiol. Heart Circ. Physiol. 2012; 302 (3): 499-505. https://doi.org/10.1152/ajpheart.00325.2011
  18. Chistiakov D.A., Orekhov A.N., Bobryshev Y.V Endothelial Barrier and Its Abnormalities in Cardiovascular Disease. Front Physiol. 2015; 6: 365. https://doi.org/10.3389/fphys.2015.00365
  19. Zhang H.J., Wang J., Liu H.F., Zhang X.N., Zhan M., Chen FL. Overexpression of mimecan in human aortic smooth muscle cells inhibits cell proliferation and enhances apoptosis and migration. Exp. Ther. Med. 2015; 10 (1): 187-92. https://doi.org/10.3892/etm.2015.2444
  20. Seki T, Saita E., Kishimoto Y., Ibe S., Miyazaki Y., Miura K., Ohmori R., Ikegami Y., Kondo K., Momiyama Y. Low Levels of Plasma Osteoglycin in Patients with Complex Coronary Lesions. J. Atheroscler. Thromb. 2018; 25 (11): 1149-55. https://doi.org/10.5551/jat.43059
  21. Stöhr R., Schurgers L., van Gorp R., Jaminon A., Marx N., Reutelingsperger C. Annexin A5 reduces early plaque formation in ApoE-/-mice. PLoS One. 2017; 12 (12): e0190229. https://doi.org/10.1371/journal.pone.0190229
  22. Lee R., Fischer R., Charles P.D., Adlam D., Valli A., Di Gleria K., Kharbanda R.K., Choudhury R.P., Antoniades C., Kessler B.M., Channon K.M. A novel workflow combining plaque imaging, plaque and plasma proteomics identifies biomarkers of human coronary atherosclerotic plaque disruption. Clin. Proteomics. 2017; 14: 22. https://doi.org/10.1186/s12014-017-9157-x
  23. Nicolussi A., D'Inzeo S., Capalbo C., Giannini G., Coppa A. The role of peroxiredoxins in cancer. Mol. Clin. Oncol. 2017; 6 (2): 139-53. https://doi.org/10.3892/mco.2017.1129
  24. Rhee S.G., Woo H.A., Kil I.S., Bae S.H. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 2012; 287 (7): 4403-10. https://doi.org/10.1074/jbc.R111.283432
  25. Rhee S.G., Kil I.S. Multiple Functions and Regulation of Mammalian Peroxiredoxins. Annu. Rev. Biochem. 2017; 86: 749-75. https://doi.org/10.1146/annurev-biochem-060815-014431
  26. Liu J., Su G., Gao J., Tian Y., Liu X., Zhang Z. Effects of Peroxiredoxin 2 in Neurological Disorders: A Review of its Molecular Mechanisms. Neurochem. Res. 2020; 45 (4): 720-30. https://doi.org/10.1007/s11064-020-02971-x
  27. Kato R., Hayashi M., Aiuchi T, Sawada N., Obama T., Itabe H. Temporal and spatial changes of peroxiredoxin 2 levels in aortic media at very early stages of atherosclerotic lesion formation in apoE-knockout mice. Free Radic. Biol Med. 2019; 130: 348-60. https://doi.org/10.1016/j.freeradbiomed.2018.10.458
  28. Xi D., Luo T, Xiong H., Liu J., Lu H., Li M., Hou Y., Guo Z. SAP: structure, function, and its roles in immune-related diseases. Int. J. Cardiol. 2015; 187: 20-6. https://doi.org/10.1016/j.ijcard.2015.03.179

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies