Proteins timp-2, irisin and situation with hemostasis, lipid metabolism and sex hormones in female cardiovascular patients

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The study of the level of the so-called «youth proteins» TIMP-2 and irisin in diseases of the cardiovascular system is not only of theoretical interest, but also of practical importance, as it outlines new ways to treat these diseases.

Purpose of study was to summarize the literature data and also the authors presentation of proper results of a study of the changes in TIMP-2 and irisin levels and their relation to the indicators of the cardiovascular system activity, lipid metabolism, hemostasis system and sex hormones level in female hypertensive patients (HP).

Material and methods. The investigation was in women group treated with drugs (HP-1) and in women group systematically taking, over several years, at least 3 courses of kinesiotherapy (HP-2). Relatively healthy women of the same age served as the control group.

Results. TIMP-2 level was found to increase in the GB-1 group and to return to normal in the GB-2 group. Similar data were obtained for other cardiovascular diseases as well. Irisin concentration in HP-1 and HP-2 patients does not change in comparison to the control group.

Conclusion. Literature data on irisin content in case of cardiovascular diseases are contradictory. However the authors of this study found the relationships in the control group, in HP-1 and HP-2 patients, between the levels of TIMP-2 and irisin, on the one hand, and cardiovascular system functions, as well as values of lipid spectrum, hemostasis, and sex hormones, on the other.

Full Text

Restricted Access

About the authors

Yuri N. Smolyakov

Chita State Medical Academy; Innovative Clinic Academy of Health

Email: smolyakov@rambler.ru
ORCID iD: 0000-0001-7920-7642

Head of the Department of Medical Physics and Informatics, Chita State Medical Academy of the Ministry of Health of Russia, candidate of medical sciences, assistant professor

Russian Federation, Gorky str., 39 «a», Chita, 672000; Kohanovskogo str., 13, Chita, 672000

Natalia I. Chalisova

I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences; St. Petersburg Institute of Bioregulation and Gerontology

Email: ni_chalisova@mail.ru
ORCID iD: 0000-0002-2371-0043

Expert scientific worker of the I.P. Pavlov Institute of Physiology RAS, expert scientific worker of the laboratory of Oncogerontology of Biogerontology department of Saint Petersburg Institute of Bioregulation and Gerontology, doctor of biologic sciences, professor

Russian Federation, nab. Makarova, 6, St. Petersburg, 199034; Dynamo Ave., 3, Saint Petersburg, 197110

Ecaterina S. Guseva

Innovative Clinic Academy of Health

Email: guseva81@gmail.com
ORCID iD: 0000-0001-6212-6571

director assistance of clinic-expert and organization-methodic work in the Innovative clinic “Health Academy, candidate of medical sciences

Russian Federation, Kohanovskogo str., 13, Chita, 672000

Boris I. Kuznik

Chita State Medical Academy; Innovative Clinic Academy of Health

Email: bi_kuznik@mail.ru
ORCID iD: 0000-0002-2502-9411

Honorable chief of cathedra of normal physiology of Chita State Medical Academy. Chita State Medical Academy of the Ministry of Health of Russia, doctor of medical sciences, professor

Russian Federation, Gorky str., 39 «a», Chita, 672000; Kohanovskogo str., 13, Chita, 672000

Natalya V. Lareva

Chita State Medical Academy

Author for correspondence.
Email: larevanv@mail.ru
ORCID iD: 0000-0001-9498-9216

MD, Professor, Vice-Rector for Scientific and International Work, Head of the Department of Therapy at the Faculty of Additional Professional Education, Chita State Medical Academy of the Ministry of Health of Russia

Russian Federation, Gorky str., 39 «a», Chita, 672000

References

  1. Nagel F., Santer D., Stojkovic S., The impact of age on cardiac function and extracellular matrix component expression in adverse post-infarction remodeling in mice. Experimental Gerontology. 2019; 119: 193–202. DOI: 10,1016/j.exger.2019.02.008.
  2. Rana K.S., Arif M., Hill E.J., Aldred S., Nagel D.A., Nevill A., Randeva H.S., Bailey C.J., Bellary S., Brown J.E. Plasma irisin levels predict telomere length in healthy adults. Age (Dordr). 2014; 36 (2): 995–1001. DOI: 10,1007/s11357-014-9620-9.
  3. Кузник Б.И., Давыдов С.О., Степанов О.В., Гусева Е.С., Смоляков Ю.Н., Цыбиков Н.Н., Файн И.В. «Белок молодости» GDF11, состояние системы гемостаза и особенности кровотока у женщин, страдающих гипертонической болезнью. Тромбоз, гемостаз и реология. 2018; 1: 39–45. DOI: 10,25555/THR.2018.1 .0822. [Kuznik B.I., Davydov S.O, Stepanov O.V., Guseva E.S., Smolyakov Y.N, Tsybikov N.N., Fine I.V. «Youth protein» GDF11, hemostasis system condition and blood flow pecularities in hypertensive women. Thrombosis, Hemostasis and Rheology. 2018; 1: 39–45. DOI: 10,25555/THR.2018.1 .0822. (in Russian)].
  4. Hew-Butler T., Landis-Piwowar K., Byrd G., Seimer M., Seigneurie N., Byrd B., Muzik O. Plasma irisin in runners and non-runners: no favorable metabolic association in humans. Physiological Reports. 2015; 3 (1): e12262. DOI: 10,14814/phy2.12262.e12262.
  5. Кузник Б.И., Давыдов С.О., Гусева Е.С., Смоляков Ю.Н., Степанов А.В. Влияние кинезитерапии на содержание ирисина у женщин с заболеваниями сердечно-сосудистой системы. Забайкальский Медицинский вестник. 2022; 1: 130–8. [Kuznik B.I., Davydov S.O., Guseva E.S., Smolyakov Y.N., Stepanov A.V. Influence of kinesiotherapy on irisin levels in woman with cardiovascular diseases. Transbaikal Medical Bulletin. 2022; 1: 130–8 (in Russian)].
  6. Пантелеев М.А., Баландина А.Н., Сошитова Н.П., Галстян Г.М.. Емельяненко В.М., Воробьев Е.И., Атауллаханов Ф.И. Пространственная динамика гемостаза и тромбоза: теория и практика. Тромбоз, гемостаз и реология. 2010; 4: 48–53. [Panteleev M.A., Balandina A.N., Soshitova N.P., Galstyan G.M., Yemelyanenko V.M., Vorobyov E.I., Ataullakhanov F.I. Spatial dynamics of hemostasis and thrombosis: theory and practice. Thrombosis, Hemostasis and Rheology. 2010; 4: 48–53 (in Russian)].
  7. Briest W., Hölzl A., Rassler B., Deten A., Leicht M., Baba H.A., Zimmer H. Cardiac remodeling after long term norepinephrine treatment in rats Cardiovasc Research. 2001; 52 (2): 265–73. DOI: 10,1016/s0008-6363(01)00398.
  8. Polyakova V., Loeffler I., Hein S., Miyagawa S., Piotrowska I., Dammer S., Risteli J., Schaper J., Kostin S. Int. J. Cardiology. 2011; 151 (1): 18–33. DOI: 10,1016/j.ijcard.2010,04.053.
  9. Freitas I.A., Lima N.A., Silva GBD. Jr, Castro R.L. Jr, Patel P., Lima CCV, Lino DODC. Novel biomarkers in the prognosis of patients with atherosclerotic coronary artery disease. Rev. Port Cardiology. 2020; 39 (11): 667–72. DOI: 10,1016/j.repc.2020,05.010,
  10. Askari H., Rajani S.F., Poorebrahim M., Haghi-Aminjan H., Raeis-Abdollahi E., Abdollahi M. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis. Pharmacol Research. 2018; 129: 44–55. DOI: 10,1016/j.phrs.2018.01.012.
  11. Lee M.J., Lee S.A., Nam B.Y., Park S., Lee S.H., Ryu H.J., Kwon Y.E., Kim Y.L., Park K.S., Oh H.J., Park J.T., Han S.H., Ryu D.R., Kang S.W., Yoo T.H. Irisin, a novel myokine is an independent predictor for sarcopenia and carotid atherosclerosis in dialysis patients. Atherosclerosis. 2015; 242 (2): 476–82. DOI: 10,1016/j.atherosclerosis.2015.08.002.
  12. Çelik H.T., Akkaya N., Erdamar H., Gok S., Kazanci F.., Demircelik. B, Cakmak M., Yigitoglu R. The Effects of Valsartan and Amlodipine on the Levels of Irisin, Adropin, and Perilipin. Clinical Laboratory. 2015; 61 (12): 1889–95. DOI: 10,7754/clin.lab.2015.150420,PMID: 26882812.
  13. Ramani R., Nilles K., Gibson G., Burkhead B., Mathier M., McNamara D., McTiernan C. F. Tissue inhibitor of metalloproteinase‐2 gene delivery ameliorates postinfarction cardiac remodeling. Clinical and translational science. 2011; 4 (1): 24–31. DOI: 10,1111/j.1752-8062.2010,00252.x.
  14. Haghighi A.H., Hajinia M., Askari R., Abbasian S., Goldfied G.Can . J. Physiol. Pharmacol. 2022; 100 (9): 937–44. DOI: 10,1139/cjpp-2021-07122022.
  15. Schäfer M., Ivy DD, Nguyen K, Boncella K, Frank BS, Morgan GJ, Miller-Reed K, Truong U., Colvin K., Yeager M.E. Metalloproteinases and their inhibitors are associated with pulmonary arterial stiffness and ventricular function in pediatric pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 2021; 321 (1): 242–52. DOI: 10,1152/ajpheart.00750,2020,
  16. Pereira S.C., Parente J.M., Belo V.A., Mendes A.S., Gonzaga N.A., do Vale G.T., Ceron C.S., Tanus-Santos J.E., Tirapelli C.R., Castro M.M. Quercetin decreases the activity of matrix metalloproteinase-2 and ameliorates vascular remodeling in renovascular hypertension. Аtherosclerosis. 2018; 270: 146–53. DOI: 10,1016.
  17. Lacerda L., Faria A.P., Fontana V., Moreno H., Sandrim V. Arq. Bras. Cardiol. 2015; 105 (2): 168–75. DOI: 10,5935/abc.20150060,
  18. Kuloglu T., Aydin S., Eren M.N., Yilmaz M., Sahin I., Kalayci M., Sarman E., Kaya N., Yilmaz O.F., Turk A., Aydin Y., Yalcin M.H., Uras N., Gurel A., Ilhan S., Gul E., Aydin S. Irisin: a potentially candidate marker for myocardial infarction. Peptides. 2014; 55: 85–91. DOI: 10,1016/j.peptides.2014.02.008.
  19. Matsuo Y., Gleitsmann K., Mangner N., Werner S., Fischer T., Bowen T.S., Kricke A., Matsumoto Y., Kurabayashi M., Schuler G., Linke A., Adams V. Fibronectin type III domain containing 5 expression in skeletal muscle in chronic heart failure-relevance of inflammatory cytokines. J. Cachexia Sarcopenia Muscle. 2015; 6 (1): 62–72. DOI: 10,1002/jcsm.12006.
  20. Demirel S., Sahinturk S., Isbil N., Ozyener F..Can. Irisin relaxes rat thoracic aorta: MEK1/2 signaling pathway, KV channels, SKCa channels, and BKCa channels are involved in irisin-induced vasodilation. J. Physiol Pharmacol. 2022; 100 (5): 379–85. DOI: 10,1139/cjpp-2021-0500,
  21. Zhang W., Chang L., Zhang C., Zhang R, Li Z., Chai B., Li J., Chen E., Mulholland M. Central and peripheral irisin differentially regulate blood pressure. Cardiovasc Drugs Ther. 2015; 29 (2): 121–7. DOI: 10,1007/s10557-015-6580-y.
  22. Brailoiu E., Deliu E., Sporici R.A., Cristina Brailoiu G. Irisin evokes bradycardia by activating cardiac-projecting neurons of nucleus ambiguous. Physiological reports. 2015; 3 (6): e12419. DOI: 10,14814/phy2.12419.
  23. Aydoğdu N., Yavuz Ö.Y., Taştekin E., Tayfur P., Kaya O., Kandemir N. The effects of irisin on Nω-nitro-L-arginine methyl ester hydrochloride-induced hypertension in rats. Balkan Medical J. 2019; 36 (6): 337–43. DOI: 10,4274/balkanmedj.galenos.2019.2019.5.113.
  24. Kalkan A.K., Huseyin Altug Cakmak, Mehmet Erturk, Kübra Erol Kalkan, Fatih Uzun, Omer Tasbulak, Vesile Ornek Diker, Suleyman Aydin Ahmet Celik. Adropin and Irisin in Patients with Cardiac Cachexia. Arq. Bras. Cardiol. 2018; 111 (1): 39–47. DOI: 10,5935/abc.20180109.
  25. Inoue K., Fujie S., Hasegawa N., Horii N,. Uchida M., Iemitsu K., Sanada K, Hamaoka T., Iemitsu M. Aerobic exercise training-induced irisin secretion is associated with the reduction of arterial stiffness via nitric oxide production in adults with obesity. Physiol. Nutr. Metab. 2020; 45 (7): 715–22. DOI: 10,1139/apnm-2019-0602.
  26. Tanisawa K., Taniguchi H., Sun X., Ito T., Cao Z.B., Sakamoto S., Higuchi M. Common single nucleotide polymorphisms in the FNDC5 gene are associated with glucose metabolism but do not affect serum irisin levels in Japanese men with low fitness levels. Metabolism. 2014; 63 (4): 574–83. DOI: 10,1016/j.metabol.2014.01.005.
  27. Sun N., Chen Y., Fan Y., Chang J., Gao X., Zhao Y., Sun H., Wang Z., Gu X., Tian J., Wu B. Plasma irisin levels are associated with hemodynamic and clinical outcome in idiopathic pulmonary arterial hypertension patients. Intern. Emerg. Med. 2021; 16 (3): 625–32. DOI: 10,1007/s11739-020-02467-0,
  28. Li B., Yao Q., Guo S., Dong Y., Xin H., Wang H., Liu L., Chang W., Zhang Y. Type 2 diabetes with hypertensive patients results in changes to features of adipocytokines: Leptin, Irisin, LGR4, and Sfrp5. Clin. Exp. Hypertens. 2019; 41 (7): 645–50, DOI: 10,1080/10641963.2018.1529779.
  29. Кузник Б.И., Давыдов С.О., Степанов А.В. Роль мышечного гормона ирисина в регуляции физиологических функций в условиях нормы и патологии. Успехи физиологич. наук. 2018; 49 (4): 59–80, [Kuznik B.I, Davydov S.O, Stepanov A.V. The role of the muscle hormone irisin in the regulation of physiological functions under normal and pathological conditions. Advances in Physiological Sciences 2018; 49 (4): 59–80 (in Russian)].
  30. Kremastiotis G., Handa I., ween Jackson C., George S., Johnson J. Disparate effects of MMP and TIMP modulation on coronary atherosclerosis and associated myocardial fibrosis. Sci. Rep. 2021; 311 (1): 23081. DOI: 10,1038/s41598-021-02508-4.
  31. Zhang S.X., Zhuang L.L., Liu J., Jing Y.Y., Sun J., Gong L., Liu X.Y. The role of Parkin protein in cardiac function and ventricular remodeling in myocardial infarction rats. Eur Rev. Med. Pharmacol. Sci. 2018; 15: 5004–13. DOI: 26355/eurrev_201808_15641.
  32. Ramani R., Nilles K., Gibson G., Burkhead B., Mathier M., McNamara D., McTiernan C. F. Tissue inhibitor of metalloproteinase-2 gene delivery ameliorates postinfarction cardiac remodeling. Clinical and translational science. 2011; 4 (1): 24–31. DOI: 10,1111/j.1752-8062.2010,00252.x.
  33. Derosa G., Maffioli P., D’Angelo A., Salvadeo S.A., Ferrari I., Fogari E., Gravina A., Mereu .R, Palumbo I., Randazzo S., Cicero A.F. Evaluation of metalloproteinase 2 and 9 levels and their inhibitors in combined dyslipidemia. Clin. Invest. Med. 2009; 32 (2): 124–32. DOI: 10,25011/cim.v32i2.6030,PMID: 19331801.
  34. Anaszewicz M., Wawrzeńczyk A., Czerniak B., Banaś W., Socha E., Lis K, Żbikowska-Gotz M., Bartuzi Z., Budzyński L. Leptin, adiponectin, tumor necrosis factor α, and irisin concentrations as factors linking obesity with the risk of atrial fibrillation among inpatients with cardiovascular diseases. Kardiol. Pol. 2019; 77 (11): 1055–61. DOI: 10,33963/KP.14989.
  35. Abd El-Mottaleb N.A., Galal H.M., Maghraby K.M., Gadallah A.I. Serum irisin level in myocardial infarction patients with or without heart failure. Can. J. Physiol. Pharmacol. 2019; 10: 932–8. DOI: 10,1139/cjpp-2018-0736.
  36. Miazgowski T., Miazgowski B., Kaczmarkiewicz A., Kopeć J. Associations of circulating irisin with 24-h blood pressure, total and visceral fat, and metabolic parameters in young adult hypertensives. J. Arch. Endocrinol. Metab. 2021; 65 (2): 137–43. DOI: 10,20945/2359-3997000000333.
  37. Kaneda H., Nakajima T., Haruyama A., Shibasaki I., Hasegawa T., Sawaguchi T., Kuwata T., Obi S., Arikawa T., Sakuma M., Amano H., Toyoda S., Fukuda H., Inoue T. Association of serum concentrations of irisin and the adipokines adiponectin and leptin with epicardial fat in cardiovascular surgery patients. PLoS One. 2018; 13 (8): e0201499. DOI: 10,1371/journal.pone.0201499.
  38. He W.Y., Bai Q., A L.T., Tang C.S., Zhang A.H. Irisin levels are associated with urotensin II levels in diabetic patients. J. Diabetes Investig. 2015; 6 (5): 571–6. DOI: 10,1111/jdi.12331.
  39. Hew-Butler T., Landis-Piwowar K., Byrd G., Seimer M., Seigneurie N., Byrd B., Muzik O. Plasma irisin in runners and non-runners: no favorable metabolic association in humans. Physiological Reports. 2015; 3 (1): e12262 DOI: 10,14814/phy2.12262.
  40. Panagiotou G., Mu L., Na B., Mukamal K.J., Mantzoros C.S. Circulating irisin, omentin-1, and lipoprotein subparticles in adults at higher cardiovascular risk. Metabolism Dis. 2014; 63 (10): 1265–71. DOI: 10,1016/j.metabol.2014.06.001.
  41. De Meneck F., Victorino de Souza L., Oliveira V., do Franco MC. High irisin levels in over weight/obese children and its positive correlation with metabolic profile, blood pressure, and endothelial progenitor cells. Nutr. Metab. Cardiovasc. Dis. 2018; 28 (7): 756–64 DOI: 10,1016/j.numecd.2018.04.009.
  42. Pawlak K., Pawlak D., Myśliwiec M. Thromb Res. 2008; 121 (4): 543–8. DOI: 10,1016/j.thromres.2007.06.008.
  43. Fine I., Kuznik B.I., Kaminsky A.V., Shenkman L., Kustovsjya E.M., Maximova O.G. New noninvasive index for evaluation of the vascular age of healthy and sick people. J. Biomed. Opt. 2012; 17 (8): 2–7. DOI: 10,1117/1.JBO.17.8.087002.
  44. Хавинсон В.Х., Кузник Б.И., Рыжак Г.А. Ирисин, бетатрофин, сахарный диабет, ожирение и метаболический синдром. Эпигенетические механизмы регуляции. Успехи физиологических наук. 2018; 49: 72–86. [Khavinson V.Kh., Kuznik B.I., Ryzhak G.A. Irisin, betatrophin, diabetes mellitus, obesity and metabolic syndrome. Epigenetic mechanisms of regulation. Advances in Physiological Sciences. 2018; 49: 72–86 (in Russian)].
  45. Кузник Б.И., Давыдов С.О.,Чалисова Н.И. Роль белков MANF, TIMP-2 и ирисина в старении организма. Успехи современной биологии. 2019; 139 (6): 540–52. [Kuznik B.I., Davydov S.O., Chalisova N.I. The role of MANF, TIMP-2 and irisin proteins in aging. Advances in Modern Biology. 2019; 139 (6): 540–52 (in Russian)].

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies