Study of the relationship between copper and zinc concentrations in blood serum and markers of inflammation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. According to modern concepts, the inflammatory process is one of the key links in the development of cardiovascular, autoimmune, neurological, oncological diseases, as well as metabolic syndrome, complications of diabetes mellitus, and pathologies of the respiratory system. The implementation of a normal inflammatory response requires metabolic and cellular resources, the functionality of enzymatic and antioxidant systems, which, in turn, depends on the body’s supply of macro- and microelements. Research has shown that zinc and copper are some of the main elements associated with inflammation.

Purpose of the study. The purpose of the study was to examine the relationship between serum copper and zinc concentrations and markers of inflammation.

Material and methods. The study examined correlations between serum copper and zinc concentrations and various measures of inflammation in 1,153 people aged 18 to 86 years. The concentrations of CRP, ESR, ferritin, ceruloplasmin, leukocytes, neutrophils, fibrinogen, uric acid, copper, and zinc were determined in those examined. Serum microelements were measured by ICP-MS; other indicators were determined by standard methods. Correlation analysis was carried out using the Spearman coefficient.

Results. The strongest statistically significant correlations (p<0.05) were found between copper and ceruloplasmin (r=0.612), as well as between copper and CRP (r=0.474) and ESR (r=0.421). Serum copper and zinc showed statistically significant but weak correlations with most inflammatory markers.

Conclusion. The study showed the presence of statistically significant moderate, medium and weak correlations of serum copper and zinc concentrations with inflammation markers, which is due to many intermediate processes and intermediary metabolic reactions between these indicators.

Full Text

Restricted Access

About the authors

Galina D. Morozova

First Moscow State Medical University named after I.M. Sechenov, (Sechenov University)

Author for correspondence.
Email: morozova0826@gmail.com
ORCID iD: 0000-0001-8600-902X

Junior Researcher

Russian Federation, Trubetskaya st., 8, building 2, Moscow, 119991

Eugenia D. Namiot

First Moscow State Medical University named after I.M. Sechenov, (Sechenov University)

Email: enamiot@gmail.com
ORCID iD: 0000-0003-3725-6360

Student

Russian Federation, Trubetskaya st., 8, building 2, Moscow, 119991

Elena V. Rylina

First Moscow State Medical University named after I.M. Sechenov, (Sechenov University); Federal State Autonomous Educational Institution of Higher Education "Russian Peoples' Friendship University"

Email: hellch@mail.ru
ORCID iD: 0000-0002-9375-309X

Leading Researcher, I.M. Sechenov First Moscow State Medical University (Sechenov University); Docent Peoples’ Friendship University of Russia (RUDN University), Candidate of Pharmaceutical Sciences

Russian Federation, Trubetskaya st., 8, building 2, Moscow, 119991; Miklouho-Maklaya st., 6, Moscow, 117198

Tatyana V. Korobeinikova

First Moscow State Medical University named after I.M. Sechenov, (Sechenov University); Federal State Autonomous Educational Institution of Higher Education "Russian Peoples' Friendship University"

Email: korobeynikova_t_v@staff.sechenov.ru
ORCID iD: 0000-0002-1373-6354

Head of Molecular Dietetics Laboratory, I.M. Sechenov First Moscow State Medical University (Sechenov University); Docent Peoples’ Friendship University of Russia (RUDN University), Candidate of Technical Sciences

Russian Federation, Trubetskaya st., 8, building 2, Moscow, 119991; Miklouho-Maklaya st., 6, Moscow, 117198

Anna A. Tsibulina

First Moscow State Medical University named after I.M. Sechenov, (Sechenov University)

Email: anna1268@mail.ru
ORCID iD: 0009-0002-0165-5183

Student

Russian Federation, Trubetskaya st., 8, building 2, Moscow, 119991

Arsenii R. Sadykov

Laboratory of Metabolomic Diagnostics

Email: arsenysadykov91@gmail.com
ORCID iD: 0000-0003-1269-0427

Data Analyst, Laboratory of Metabolomic Diagnostics

Russian Federation, Starokaluzhskoe Shosse, 63, Moscow, 117630

Vasiliy V. Yurasov

Federal State Autonomous Educational Institution of Higher Education "Russian Peoples' Friendship University"; Laboratory of Metabolomic Diagnostics

Email: v.yurasov@lab4p.ru
ORCID iD: 0000-0002-2320-9806

Medical Affairs Director, Laboratory of Metabolomic Diagnostics, Senior Lecturer of Department of Medical Elementology Peoples Friendship University of Russia, Candidate of Medical Sciences

Russian Federation, Miklouho-Maklaya st., 6, Moscow, 117198; Starokaluzhskoe Shosse, 63, Moscow, 117630

Anatoly V. Skalny

First Moscow State Medical University named after I.M. Sechenov, (Sechenov University); Federal State Autonomous Educational Institution of Higher Education "Russian Peoples' Friendship University"

Email: skalny.sport@gmail.com
ORCID iD: 0000-0001-7838-1366

Head of the Center for Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Head of Department of Medical Elementology, Peoples Friendship University of Russia, Doctor of Medical Sciences, Professor

Russian Federation, Trubetskaya st., 8, building 2, Moscow, 119991; Miklouho-Maklaya st., 6, Moscow, 117198

References

  1. Barbu E., Popescu M.R., Popescu A.C., Balanescu S.M. Inflammation as A Precursor of Atherothrombosis, Diabetes and Early Vascular Aging. Int J. Mol. Sci. 2022; 23 (2): 963. doi: 10.3390/ijms23020963.
  2. Xie J., Van Hoecke L., Vandenbroucke R.E. The Impact of Systemic Inflammation on Alzheimer's Disease Pathology. Front Immunol. 2022; 12: 796867. doi: 10.3389/fimmu.2021.796867.
  3. Nelson D.L., Michael M.C. Lehninger Principles of Biochemistry. 7th ed., W.H. Freeman. 2017.
  4. Максимчук Т.П., Скальный А.В., Радыш И.В. Бионеорганическая химия с основами медицинской элементологии: учебник. М.: Российский ун-т дружбы народов. 2019; 624. [Maksimchuk T.P., Skalnyj A.V., Radysh I.V. Bioinorganic chemistry with the basics of medical elementology: a textbook. Rossijskij un-t druzhby narodov. 2019; 624 (in Russian)]
  5. Meng H., Ruan J., Yan Z., Chen Y., Liu J., Li X., Meng F. New Progress in Early Diagnosis of Atherosclerosis. Int J. Mol. Sci. 2022; 23 (16): 8939. doi: 10.3390/ijms23168939.
  6. Gardner D.S., Allen J.C., Goodson D., Harvey D., Sharman A., Skinner H., Szafranek A., Young J.S. Bailey E.H., Devonald M.A. Urinary Trace Elements Are Biomarkers for Early Detection of Acute Kidney Injury. Kidney Int Rep. 2022; 7 (7): 1524–38. doi: 10.1016/j.ekir.2022.04.085.
  7. Vorotnikov A.V., Stafeev I.S., Menshikov M.Y., Shestakova M.V., Parfyonova Y.V. Latent Inflammation and Defect in Adipocyte Renewal as a Mechanism of Obesity-Associated Insulin Resistance. Biochemistry (Mosc). 2019; 84 (11): 1329–45. doi: 10.1134/S0006297919110099.
  8. Al-Saleh I., Alrushud N., Alnuwaysir H., Elkhatib R., Shoukri M., Aldayel F., Bakheet R., Almozaini M. Essential metals, vitamins and antioxidant enzyme activities in COVID-19 patients and their potential associations with the disease severity. Biometals. 2022; 35 (1): 125–45. doi: 10.1007/s10534-021-00355-4.
  9. Scassellati C., Bonvicini C., Benussi L., Ghidoni R., Squitti R. Neurodevelopmental disorders: Metallomics studies for the identification of potential biomarkers associated to diagnosis and treatment. J. Trace Elem Med. Biol. 2020; 60: 126499. doi: 10.1016/j.jtemb.2020.126499.
  10. Skalny A.V., Aschner M., Tinkov A.A. Zinc. Adv Food Nutr Res. 2021; 96: 251–310. doi: 10.1016/bs.afnr.2021.01.003.
  11. Kim B., Lee W.W. Regulatory Role of Zinc in Immune Cell Signaling. Mol Cells. 2021; 44 (5): 335–41. doi: 10.14348/molcells.2021.0061.
  12. Olechnowicz J., Tinkov A., Skalny A., Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol Sci. 2018; 68 (1): 19–31. doi: 10.1007/s12576-017-0571-7.
  13. Scheiber I., Dringen R., Mercer J.F. Copper: effects of deficiency and overload. Met Ions Life Sci. 2013; 13: 359–87. doi: 10.1007/978-94-007-7500-8_11.
  14. Davalli P., Mitic T., Caporali A., Lauriola A., D'Arca D. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxid Med Cell Longev. 2016; 2016: 3565127. doi: 10.1155/2016/3565127.
  15. Ridker P.M., Silvertown J.D. Inflammation, C-reactive protein, and atherothrombosis. J. of periodontology. 2008; 79: 1544–51. doi: 10.1902/jop.2008.080249
  16. Pepys M.B., Hirschfield, G.M. C-reactive protein: a critical update. The J. of clinical investigation. 2003; 111 (12): 1805–12. doi: 10.1172/JCI18921
  17. Shrivastava A.K., Singh H.V., Raizada A., Singh S.K. C-reactive protein, inflammation and coronary heart disease. The Egyptian Heart J. 2015; 67 (2): 89–97. doi: 10.1016/j.ehj.2014.11.005
  18. Dong J., Wang X., Xu C., Gao M., Wang S., Zhang J., Tong H., Wang L., Han Y., Cheng N., Han Y. Inhibiting NLRP3 inflammasome activation prevents copper-induced neuropathology in a murine model of Wilson’s disease. Cell death & disease. 2021; 12 (1): 87. doi: 10.1038/s41419-021-03397-1
  19. Bui V.Q., Stein A.D., DiGirolamo A.M., Ramakrishnan U., Flores-Ayala R.C., Ramirez-Zea M., Grant F.K., Villalpando S., Martorell R. Associations between serum C-reactive protein and serum zinc, ferritin, and copper in Guatemalan school children. Biological trace element research. 2012; 148: 154–60. doi: 10.1007/s12011-012-9358-0
  20. Luojus M.K., Lehto S.M., Tolmunen T., Elomaa A.P., Kauhanen J. Serum copper, zinc and high-sensitivity C-reactive protein in short and long sleep duration in ageing men. J of Trace Elements in Medicine and Biology. 2015; 32: 177–82. doi: 10.1016/j.jtemb.2015.07.008
  21. Devanarayanan S., Nandeesha H., Kattimani S., Sarkar S., Jose J. Elevated copper, hs C-reactive protein and dyslipidemia in drug free schizophrenia: relation with psychopathology score. Asian journal of psychiatry. 2016; 24: 99–102. doi: 10.1016/j.ajp.2016.08.025
  22. Prasad A.S. Zinc is an antioxidant and anti-inflammatory agent: its role in human health. Frontiers in nutrition. 2014; 1: 14. doi: 10.3389/fnut.2014.00014
  23. Jarosz M., Olbert M., Wyszogrodzka G., Młyniec K., Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 2017; 25: 11–24. doi: 10.1007/s10787-017-0309-4
  24. Foster M., Samman S. Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients. 2012; 4 (7): 676–94. doi: 10.3390/nu4070676
  25. Haase H., Ober-Blobaum J.L., Engelhardt G., Hebel S., Heit A., Heine H., Rink L. Zinc signals are essential for lipopolysaccharide-induced signal transduction in monocytes. The J. of Immunology. 2008; 181 (9): 6491–502. doi: 10.4049/jimmunol.181.9.6491
  26. Gammoh N.Z., Rink L. Zinc in infection and inflammation. Nutrients. 2017; 9 (6): 624. doi: 10.3390/nu9060624
  27. Sharma V.K., Tumbapo A., Pant V., Aryal B., Shrestha S., Yadav B.K., Tuladhar E.T., Bhattarai A., Raut M. Ceruloplasmin, a potential marker for glycemic status and its relationship with lipid profile in Type II diabetes mellitus. Asian J. Med. Sci. 2018; 9 (2): 13–8. doi: 10.3126/ajms.v9i2.19003
  28. Nobili V., Siotto M., Bedogni G., Ravà L., Pietrobattista A., Panera N., Alisi A., Squitti R. Levels of serum ceruloplasmin associate with pediatric nonalcoholic fatty liver disease. J of pediatric gastroenterology and nutrition. 2013; 56 (4): 370–5. doi: 10.1097/MPG.0b013e31827aced4.
  29. Arenas de Larriva A.P., Limia-Pérez L., Alcalá-Diaz J.F., Alonso A., López-Miranda J., Delgado-Lista J. Ceruloplasmin and coronary heart disease–a systematic review. Nutrients. 2020; 12 (10): 3219. doi: 10.3390/nu12103219
  30. Louro M.O., Cocho J.A., Mera A., Tutor J.C. Immunochemical and enzymatic study of ceruloplasmin in rheumatoid arthritis. J of trace elements in medicine and biology. 2000; 14 (3): 174–8. doi: 10.1016/S0946-672X(00)80007-3
  31. Sandstead H.H. Requirements and toxicity of essential trace elements, illustrated by zinc and copper. The Am. J. of clinical nutrition. 1995; 61 (3): 621–4. doi: 10.1093/ajcn/61.3.621S
  32. Jensen T., Kierulf P., Sandset P.M., Klingenberg O., Joø G.B., Godal H.C., Skjønsberg O.H. Fibrinogen and fibrin induce synthesis of proinflammatory cytokines from isolated peripheral blood mononuclear cells. Thrombosis and haemostasis. 2007; 97 (05): 822–9. doi: 10.1160/TH07-01-0039
  33. Davalos D., Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Seminars in immunopathology. 2012; 34: 43–62. doi: 10.1007/s00281-011-0290-8
  34. Lu P.P., Liu J.T., Liu N., Guo F., Ji Y.Y., Pang X. Pro-inflammatory effect of fibrinogen and FDP on vascular smooth muscle cells by IL-6, TNF-α and iNOS. Life sciences. 2011; 88 (19–20): 839–45. doi: 10.1016/j.lfs.2011.03.003
  35. Sitrin R.G., Pan P.M., Srikanth S., Todd R.F. Fibrinogen activates NF-κB transcription factors in mononuclear phagocytes. The J. of Immunology. 1998; 161 (3): 1462–70.
  36. Malek F., Spacek R., Polasek R., Karel I. Relation between levels of acute phase proteins and copper and the parameters of systolic and diastolic left ventricular function in patients with chronic heart failure. Casopis Lekaru Ceskych. 2002; 141 (14): 456–9.
  37. Zhou S., Zhang F., Chen F., Li P., He Y., Wu J., Dong L., Wang C., Wang X., Zhang W., Sun W. Micronutrient level is negatively correlated with the neutrophil-lymphocyte ratio in patients with severe COVID-19. Int. J. of clinical practice. 2022; 2022. doi: 10.1155/2022/6498794
  38. Bui V.Q., Stein A.D., DiGirolamo A.M., Ramakrishnan U., Flores-Ayala R.C., Ramirez-Zea M., Grant F.K., Villalpando S., Martorell R. Associations between serum C-reactive protein and serum zinc, ferritin, and copper in Guatemalan school children. Biological trace element research. 2012; 148: 154–60. doi: 10.1007/s12011-012-9358-0
  39. Elsaadany E., Amin S., Abdel-Hafez M., El Amrousy D., Kasem S., Abd Elaziz D., Shawky D. Study of Serum Ferritin, Zinc, and Copper Levels in Children With Helicobacter pylori Gastritis and the Effect of the Treatment. J of Pediatric Gastroenterology and Nutrition. 2022; 75 (5): 88–93. doi: 10.1097/MPG.0000000000003585
  40. Jiang T., Xie D., Wu J., He H., Wang H., Wang N., Zhu Z., Wang Y., Yang T. Association between serum copper levels and prevalence of hyperuricemia: a cross-sectional study. Scientific Reports. 2020; 10 (1): 8687. doi: 10.1038/s41598-020-65639-0.
  41. Li L.Z., Zhou G.X., Li J., Jiang W., Liu B.L., Zhou W. Compounds containing trace element copper or zinc exhibit as potent hyperuricemia inhibitors via xanthine oxidase inactivation. J. of Trace Elements in Medicine and Biology. 2018; 49: 72–8. doi: 10.1016/j.jtemb.2018.04.019

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies