Mitochondrial proteins as biomarkers of occupational disease risk of pilots and astronauts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Mitochondrial dysfunction is an important pathogenic mechanism of neurodegeneration, characterized by a progressive structural and functional loss of neurons, leading to heterogeneous clinical and pathological manifestations with subsequent impairment of the functional anatomy of the brain.

Aim of research. To study the influence of occupational hazards and stress experienced by civil aviation pilots and cosmonauts on the expression of mitochondrial biomarkers in buccal epithelial cells to assess the risk of developing neurodegenerative processes.

Material and methods. The study involved 23 male participants in two age groups. 4 groups of investgation were formed, according to the occupation, comparable in age. The expression of mitochondrial proteins prohibitin and parkin in the buccal epithelium of the study participants was assessed by immunohistochemical methods.

Results. A decrease in the expression level of the prohibitin protein was found in the group of civil aviation pilots compared to the control group of the corresponding age. There was also a tendency to a decrease in the level of expression of the studied proteins prohibitin and parkin in the group of cosmonauts compared with the control group of the corresponding age.

Conclusion. The results obtained indicate a mitochondrial dysfunction, which may increase the risk of developing neurodegenerative changes.

Full Text

Restricted Access

About the authors

Darya O. Leontyeva

Saint-Petersburg State University; St.Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of the Russian Federation

Author for correspondence.
Email: leontiewadar@yandex.ru
ORCID iD: 0000-0001-6981-2531

Junior Researcher, Faculty of Medicine, Research assistant of the Laboratory of Molecular Pathology, Department of Translational Biomedicine

Russian Federation, St. Petersburg; St. Petersburg

Anna S. Zubareva

St.Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of the Russian Federation

Email: molbiom-niif@yandex.ru
ORCID iD: 0000-0001-6872-3799

Research assistant of the Laboratory of Molecular Neuroimmunoendocrinology of the Department of Translational Biomedicine

Russian Federation, St. Petersburg

Alexander E. Korovin

Saint-Petersburg State University; Kirov Military Medical Academy

Email: korsyrik@mail.ru
ORCID iD: 0000-0001-5507-6975

Professor of the Department of Pathology of the Medical Institute, Lecturer at the Department of Advanced Therapy for Physicians, Doctor of Medical Sciences, Associate Professor

Russian Federation, St. Petersburg; St. Petersburg

Aleksey P. Grishin

Research Institute of the Yuri Gagarin Space Center

Email: agrishin1234@gmail.com
ORCID iD: 0009-0007-9771-1747

Head of Medical Department, Chief doctor 

Russian Federation, Zvezdny Gorodok

Dmitry V. Tovpeko

Saint-Petersburg State University; Kirov Military Medical Academy

Email: tovpeko.dmitry@gmail.com
ORCID iD: 0000-0003-0286-3056

Researcher at the Faculty of Medicine, Junior researcher 

Russian Federation, St. Petersburg; St. Petersburg

Tamara V. Fedotkina

Saint-Petersburg State University; Almazov National Medical Research Center

Email: t.v.fedotkina@gmail.com
ORCID iD: 0000-0002-2723-4590

Leading researcher of the laboratory of microangiopathic mechanisms of atherogenesis, Associate Professor, Department of Cell Biology and Histology, Institute of Medical Education

Russian Federation, St. Petersburg; St. Petersburg

Leonid P. Churilov

Saint-Petersburg State University; St.Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of the Russian Federation

Email: elpach@mail.ru
ORCID iD: 0000-0001-6359-0026

Head of Pathology Department, Leading researcher, M.D. Associate Professor

Russian Federation, St. Petersburg; St. Petersburg

References

  1. Poddar K.M., Chakraborty A., Banerjee S. Neurodegeneration: diagnosis, prevention, and therapy. Oxidoreductase. 2021. doi: 10.5772/intechopen.94950
  2. Сухоруков В.С., Воронкова А.С., Литвинова Н.А., Баранич Т.И., Иллариошкин С.Н. Роль индивидуальных особенностей митохондриальной ДНК в патогенезе болезни Паркинсона. Генетика. 2020; 56 (4): 392–400. doi: 10.31857/S0016675820040141. [Sukhorukov V.S., Voronkova A.S., Litvinova N.A., Baranich T.I., Illarioshkin S.N. The role of mitochondrial dna individuality in the pathogenesis of Parkinson’s disease Genetika. 2020; 56 (4): 392–400. doi: 10.31857/S0016675820040141 (in Russian)]
  3. Wilson D.M. 3rd, Cookson M.R., Van Den Bosch L., Zetterberg H., Holtzman D.M., Dewachter I. Hallmarks of neurodegenerative diseases. Cell. 2023; 186 (4): 693–714. doi: 10.1016/j.cell.2022.12.032
  4. World Health Organization. Global status report on the public health response to dementia. World Health Organization. 2021. Available at: https://apps.who.int/iris/handle/10665/344701
  5. Jellinger K.A. Basic mechanisms of neurodegeneration: a critical update. J. Cell. Mol. Med. 2010; 14 (3): 457–87. doi: 10.1111/j.1582-4934.2010.01010.x
  6. Brown R.C., Lockwood A.H., Sonawane B.R. Neurodegenerative diseases: an overview of environmental risk factors. Environ. Health Perspect. 2005; 113 (9): 1250–6. doi: 10.1289/ehp.7567
  7. Cheng Y.W., Chiu M.J., Chen Y.F., Cheng T.W., Lai Y.M., Chen T.F. The contribution of vascular risk factors in neurodegenerative disorders: from mild cognitive impairment to Alzheimer’s disease. Alzheimers Res Ther. 2020; 12 (1): 91. doi: 10.1186/s13195-020-00658-7
  8. Armstrong R. What causes neurodegenerative disease? Folia Neuropathol. 2020; 58 (2): 93–112. doi: 10.5114/fn.2020.96707
  9. Liu C., Liu Z., Zhang Z., Li Y., Fang R., Li F., Zhang J. A Scientometric analysis and visualization of research on Parkinson’s disease associated with pesticide exposure. Front. Public Health. 2020; 8: 91. doi: 10.3389/fpubh.2020.00091
  10. Hou Y., Dan X., Babbar M., Wei Y., Hasselbalch S.G., Croteau D.L., Bohr V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019; 15 (10): 565–81. doi: 10.1038/s41582-019-0244-7
  11. Wilson D., Driller M., Johnston B., Gill N. The prevalence and distribution of health risk factors in airline pilots: a cross-sectional comparison with the general population. Aust. N. Z. J. Public Health. 2022; 46 (5): 572–80. doi: 10.1111/1753-6405.13231
  12. Blettner M., Grosche B., Zeeb H. Occupational cancer risk in pilots and flight attendants: current epidemiological knowledge. Radiat. Environ. Biophys. 1998; 37 (2): 75–80. doi: 10.1007/s004110050097
  13. Chorley A.C., Evans B.J., Benwell M.J. Civilian pilot exposure to ultraviolet and blue light and pilot use of sunglasses. Aviat. Space Environ. Med. 2011; 82 (9): 895–900. doi: 10.3357/asem.3034.2011
  14. Ott C., Huber S. Die klinische Bedeutung von kosmischer Strahlenbelastung in der Luftfahrt. Praxis (Bern 1994). 2006; 95 (4): 99–106. doi: 10.1024/0369-8394.95.4.99 [Ott C., Huber S. The clinical significance of cosmic radiation in aviation. Praxis (Bern 1994). 2006; 95 (4): 99–106. doi: 10.1024/0369-8394.95.4.99 (in German)]
  15. Декалин А.А. Профессиональные и профессионально обусловленные заболевания летного состава гражданской авиации. Синергия Наук. 2019; 31: 1461–76 [Dekalin А.А. Occupational and occupationally caused diseases of aircraft of civil aviation. Sinergia Nauk. 2019; 31: 1461–76 (in Russian)]
  16. Laranjeiro R., Harinath G., Pollard A.K., Gaffney C.J., Deane C.S., Vanapalli S.A., Etheridge T., Szewczyk N.J., Driscoll M. Spaceflight affects neuronal morphology and alters transcellular degradation of neuronal debris in adult Caenorhabditis elegans. iScience. 2021; 24 (2): 102105. doi: 10.1016/j.isci.2021.102105
  17. Tesei D., Jewczynko A., Lynch A.M., Urbaniak C. Understanding the complexities and changes of the astronaut microbiome for successful long-duration space missions. Life (Basel). 2022; 12 (4): 495. doi: 10.3390/life12040495
  18. Afshinnekoo E., Scott R.T., MacKay M.J., Pariset E., Cekanaviciute E., Barker R., Gilroy S., Hassane D., Smith S.M., Zwart S.R., Nelman-Gonzalez M., Crucian B.E., Ponomarev S.A., Orlov O.I., Shiba D., Muratani M., Yamamoto M., Richards S.E., Vaishampayan P.A., Meydan C., Foox J., Myrrhe J., Istasse E., Singh N., Venkateswaran K., Keune J.A., Ray H.E., Basner M., Miller J., Vitaterna M.H., Taylor D.M., Wallace D., Rubins K., Bailey S.M., Grabham P., Costes S.V., Mason C.E., Beheshti A. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell. 2020; 183 (5): 1162–84. doi: 10.1016/j.cell.2020.10.050
  19. Akiyama T., Horie K., Hinoi E., Hiraiwa M., Kato A., Maekawa Y., Takahashi A., Furukawa S. How does spaceflight affect the acquired immune system? NPJ microgravity. 2020; 6: 14. doi: 10.1038/s41526-020-0104-1
  20. Самойлов А.С., Ушаков И.Б., Шуршаков В.А. Радиационное воздействие в орбитальных и межпланетных космических полетах: мониторинг и защита. Экология человека. 2019; 26 (1): 4–9. doi: 10.33396/1728-0869-2019-1-4-9 [Samoylov A.S., Ushakov I.B., Shurshakov V.A. Radiation exposure during the orbital and interplanetary spaceflights: monitoring and protection. Ekologiya cheloveka (Human Ecology). 2019; 26 (1): 4–9. doi: 10.33396/1728-0869-2019-1-4-9 (in Russian)]
  21. Meshkov D., Rykova M., Antropova E., Vdovin A., Biziukin A., Nesvizhsky I. Phagocyte system under spaceflight conditions. J. Gravit. Physiol. 1998; 5 (1): 139–40.
  22. Shirah B.H., Ibrahim B.M., Aladdin Y., Sen J. Space neuroscience: current understanding and future research. Neurol. Sci. 2022; 43 (8): 4649–54. doi: 10.1007/s10072-022-06146-0
  23. Пальцев М.А., Кветной И.М., Зуев В.А., Линькова Н.С., Кветная Т.В. Нейродегенеративные заболевания: молекулярные основы патогенеза, прижизненной персонифицированной диагностики и таргетной фармакотерапии. СПб.: ООО «Эко-Вектор», 2019; 200 [Pal’cev M.A., Kvetnoj I.M., Zuev V.A., Lin’kova N.S., Kvetnaya T.V. Neurodegenerative diseases: molecular basis of pathogenesis, lifelong personalized diagnostics and targeted pharmacotherapy. Saint-Petersburg: Eko-Vektor LLC Publisher, 2019; 200 (in Russian)]
  24. Johri A., Beal M.F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 2012; 342 (3): 619–30. doi: 10.1124/jpet.112.192138
  25. Keogh M.J., Chinnery P.F. Mitochondrial DNA mutations in neurodegeneration. Biochim. Biophys. Acta. 2015; 1847 (11): 1401–11. doi: 10.1016/j.bbabio.2015.05.015.
  26. Dawson T.M., Dawson V.L. Parkin plays a role in sporadic Parkinson’s disease. Neurodegener. Dis. 2014; 13 (2-3): 69–71. doi: 10.1159/000354307
  27. Hebron M., Chen W., Miessau M.J., Lonskaya I., Moussa C.E. Parkin reverses TDP-43-induced cell death and failure of amino acid homeostasis. J. Neurochem. 2014; 129 (2): 350–61. doi: 10.1111/jnc.12630
  28. Rosen K.M., Moussa C.E., Lee H.K., Kumar P., Kitada T., Qin G., Fu Q., Querfurth H.W. Parkin reverses intracellular β-amyloid accumulation and its negative effects on proteasome function. J. Neurosci. Res. 2010; 88 (1): 167–78. doi: 10.1002/jnr.22178
  29. Tsai Y.C., Fishman P.S., Thakor N.V., Oyler G.A. Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J. Biol. Chem. 2003; 278 (24): 22044–55. doi: 10.1074/jbc.M212235200
  30. Kubo S., Hatano T., Takanashi M., Hattori N. Can parkin be a target for future treatment of Parkinson’s disease? Expert Opin. Ther. Targets. 2013; 17 (10): 1133–44. doi: 10.1517/14728222.2013.827173
  31. Signorile A., Sgaramella G., Bellomo F., De Rasmo D. Prohibitins: a critical role in mitochondrial functions and implication in diseases. Cells. 2019; 8 (1): 71. doi: 10.3390/cells8010071.
  32. Tatsuta T., Model K., Langer T. Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol. Biol. Cell. 2005; 16 (1): 248–59. doi: 10.1091/mbc.e04-09-0807
  33. Merkwirth C., Dargazanli S., Tatsuta T., Geimer S., Löwer B., Wunderlich F.T., von Kleist-Retzow J.C., Waisman A., Westermann B., Langer T. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 2008; 22 (4): 476–88. doi: 10.1101/gad.460708.
  34. Эллиниди В.Н., Аникеева Н.В., Максимова Н.А. Практическая иммуногистоцитохимия: методические рекомендации. СПб.: ВЦЭРМ МЧС России; 2002; 36 [Ellinidi V.N., Anikeeva N.V., Maksimova N.A. Prakticheskaya immunogistocitohimiya: metodicheskie rekomendacii. Saint Petersburg: VCERM MCHS Rossii Publisher; 2002; 36 (in Russian)]
  35. Wang X., Ding D., Wu L., Jiang T., Wu C., Ge Y., Guo X.. PHB blocks endoplasmic reticulum stress and apoptosis induced by MPTP/MPP(+) in PD models. J. Chem. Neuroanat. 2021; 113: 101922. doi: 10.1016/j.jchemneu.2021. 101922
  36. Williams D.R. The biomedical challenges of space flight. Annu. Rev. Med. 2003; 54: 245–56. doi: 10.1146/annurev.med.54.101601.152215

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Microphotographs of buccal epithelium with immunofluorescence of prohibitin. Different intensities of prohibitin protein expression (red color) in buccal epithelium. Nuclei doped with 4’,6-diamidino-2- phenylindole (DAPI) (blue). Magnification ×100. A – no staining. The area of expression is 0-10,000 pixels. Score – 0. B – weak staining. Area of expression 10 001–40 000 pixels. Score – 1. C – moderate staining. Area of prohibitin expression 40,001–70,000 pix. Score – 2. D – strong staining. Area of prohibitin expression 70,001–100,000 pix. Score – 3. E – very strong staining. Area of prohibitin expression >100,000 pix. Score – 4

Download (374KB)
3. Fig. 2. Micrographs of buccal epithelium with parkin immunofluorescence. Different intensities of parkin protein expression (red) in buccal epithelium. Nuclei doped with DAPI (blue). Magnification ×100. A – no staining. The area of parkin expression is 0-2,000 pixels. Score – 0. B – weak staining. Area of parkin expression 2,001–5,000 pixels. Score – 1. C – moderate staining. Area of parkin expression 5,001–10,000 pix. Score – 2. D – strong staining. Parkin expression area 10,001–50,000 pix. Score – 3. E – very strong staining. Parkin expression area >50,000 pix. Score – 4

Download (491KB)
4. Fig. 3. Diagram of the expression index of H-score proteins prohibitin and parkin in the group of civil aviation pilots and the control group of the corresponding age, * – p<0.05

Download (939KB)
5. Fig. 4. Diagrams of H-score expression index of proteins prohibitin and parkin in the group of cosmonauts and control group of the corresponding age

Download (1MB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies