Sequencing of single cells: application and perspectives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Sequencing of single cells makes it possible to characterize the cellular and molecular composition of tissues, the state of DNA, RNA and expressed proteins. The «single-cell» sequencing method is gaining increasing popularity in modern biology and medicine.

The purpose of the study. Analysis and characterization of single-cell sequencing techniques and their applied significance.

Material and methods. The literature search was conducted in the open electronic databases of scientific literature PubMed, Elibrary, bioRxiv and Scopus. The search depth was 27 years. 46 articles were selected for analysis.

Results. Single-cell RNA sequencing – scRNA–seq – transcriptomics of individual cells with gene expression profiling. It allows clustering cells by state or type; registering rare genes that are discarded when sequencing a common transcriptome; detect point mutations.

Spatial transcriptomics – smFISH and MERFISH – methods for mapping gene expression at the genome level in stationary tissue samples developed in addition to RNA sequencing technologies. With these methods, an image is obtained using fluorescent labels.

Spatial sequencing – Slide-seq – allows us to characterize the entire transcriptome of a certain area of the isolated tissue on a slide with a resolution close to one cell. Further research of this analysis is required to reduce its cost and adapt it for more convenient use.

Conclusions. The use of single-cell sequencing methods, as well as the study of the epigenome and transcriptome, will help to differentiate cells into various subpopulations, as well as to find new predictive and prognostic targets for therapy.

Full Text

Restricted Access

About the authors

Alexander D. Neryakhin

Bashkir State Medical University of the Ministry of Health of Russia

Author for correspondence.
Email: nereahins@mail.ru
ORCID iD: 0009-0007-8246-3699

3rd year student of the Pediatric Faculty 

Russian Federation, Lenin str., 3, Ufa, 450008

Albert A. Tukhbatullin

Bashkir State Medical University of the Ministry of Health of Russia

Email: albert6789@mail.ru
ORCID iD: 0009-0000-3633-7148

3rd year student of the Pediatric Faculty 

Russian Federation, Lenin str., 3, Ufa, 450008

Gulnaz R. Khannanova

Bashkir State Medical University of the Ministry of Health of Russia

Email: gulnaz200235@gmail.com
ORCID iD: 0009-0003-1108-4350

3rd year student of the Faculty of Medicine 

Russian Federation, Lenin str., 3, Ufa, 450008

Guzel A. Rafikova

Bashkir State Medical University of the Ministry of Health of Russia; Laboratory of Immunology of the Institute of Urology and Clinical Oncology of the BSMU of the Ministry of Health of Russia

Email: rafikovaguzel@gmail.com
ORCID iD: 0000-0002-8763-6102

Junior Researcher at the Laboratory of Immunology of the Institute of Urology and Clinical Oncology of the BSMU of the Ministry of Health of the Russian Federation

Russian Federation, Lenin str., 3, Ufa, 450008; Shafiev str., 2, room 5, Ufa, 450083

Kadriya I. Enikeeva

Bashkir State Medical University of the Ministry of Health of Russia; Laboratory of Immunology of the Institute of Urology and Clinical Oncology of the BSMU of the Ministry of Health of Russia

Email: kalya1996@mail.ru
ORCID iD: 0000-0002-5995-2124

PhD in pharmacy, Head of the Immunology Laboratory of the Institute of Urology and Clinical Oncology, Assistant of the Department of Pharmacology with the course of Clinical Pharmacology of the Bashkir State Medical University of the Ministry of Health of Russia; Candidate of Pharmaceutical Sciences, assistant

Russian Federation, Lenin str., 3, Ufa, 450008; Shafiev str., 2, room 5, Ufa, 450083

References

  1. Moses L., Pachter L. Museum of spatial transcriptomics. Nat Methods. 2022; 19: 534–46. https://doi.org/10.1038/s41592-022-01409-2.
  2. Lanz T.V., Pröbstel A.K., Mildenberger I., Platten M., Schirmer L. Single-Cell High-Throughput Technologies in Cerebrospinal Fluid Research and Diagnostics. Front Immunol. 2019; 10: 1302. https://doi.org/10.1038/s41592-022-01409-22.
  3. Habibi I., Cheong R., Lipniacki T., Levchenko A., Emamian E.S., Abdi A. Computation and measurement of cell decision making errors using single cell data. PLoS Comput Biol. 2017; 13: 4. https://doi.org/10.1038/s41592-022-01409-2.
  4. Круглова Н.А., Филатов А.В. Метод секвенирования РНК (RNA-seq) в иммунологических исследованиях. Иммунология. 2017. 2: 112-117. [Kruglova N.A. Filatov A.V. The method of RNA sequencing (RNA-seq) in immunological studies. Immunologija. 2017; 2: 112–7 (in Russian)]
  5. Водясова, Е.А., Челебиева Э.С., Кулешова О.Н. Новейшие технологии высокопроизводительного секвенирования транскриптома отдельных клеток. Вавиловский журнал генетики и селекции. 2019; 5: 508–18. https://doi.org/10.1038/s41592-022-01409-2. [Vodjasova, E.A., Chelebieva Je.S., Kuleshova O.N. The latest technologies for high-performance sequencing of the transcriptome of individual cells, Vavilovskij zhurnal genetiki i selekcii. 2019; 5: 508–18. https://doi.org/10.1038/s41592-022-01409-2. (in Russian)]
  6. Azizi E., Carr A.J., Plitas G., Cornish A.E., Konopacki C., Prabhakaran S., Nainys J., Wu K., Kiseliovas V., Setty M., Choi K., Fromme R.M., Dao P., McKenney P.T., Wasti R.C., Kadaveru K., Mazutis L., Rudensky A.Y., Pe’er D. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell. 2018; 5: 1293–308. https://doi.org/10.1038/s41592-022-01409-2.
  7. Bernard V., Semaan A., Huang J., San Lucas F.A., Mulu F.C., Stephens B.M., Guerrero P.A., Huang Y., Zhao J., Kamyabi N., Sen S., Scheet P.A., Taniguchi C.M., Kim M.P., Tzeng C.W., Katz M.H., Singhi A.D., Maitra A., Alvarez H.A. Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin Cancer Res. 2019; 7: 2194–205. https://doi.org/10.1038/s41592-022-01409-2.
  8. Guo X., Zhang Y., Zheng L., Zheng C., Song J., Zhang Q., Kang B., Liu Z., Jin L., Xing R., Gao R., Zhang L., Dong M., Hu X., Ren X., Kirchhoff D., Roider H.G., Yan T., Zhang Z. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med. 2018; 7: 978–85. https://doi.org/10.1038/s41592-022-01409-2.
  9. Avila Cobos F., Alquicira-Hernandez J., Powell J.E., Mestdagh P., De Preter K. Benchmarking of cell type deconvolution pipelines for tran scriptomics data. Nat Commun. 2020; 7: 5650. https://doi.org/10.1038/s41592-022-01409-2.
  10. Chen G., Ning B., Shi T. Single-cell RNA-Seq Technologies and Related Computational Data Analysis. Front Genet. 2019; 10: 317. https://doi.org/10.1038/s41592-022-01409-2.
  11. Mok S., Al Habyan S., Ledoux C., Lee W., MacDonald K.N., McCaffrey L., Moraes C. Mapping cellular-scale internal mechanics in 3D tissues with thermally responsive hydrogel probes. Nat Commun. 2020; 11 (1): 4757. https://doi.org/10.1038/s41592-022-01409-2.
  12. Williams C.G., Lee H.J., Asatsuma T., Vento-Tormo R., Haque A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 2021; 14: 68. https://doi.org/10.1038/s41592-022-01409-2.
  13. Maynard K.R, Collado-Torres L., Weber L.M., Uytingco C., Barry B.K., Williams S.R., Catallini J.L. 2nd, Tran M.N., Besich Z., Tippani M., Chew J., Yin Y., Kleinman J.E., Hyde T.M., Rao N., Hicks S.C., Martinowich K., Jaffe A.E. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat Neurosci. 2021; 3: 425–36. https://doi.org/10.1038/s41592-022-01409-2.
  14. Rodriques S.G., Stickels R.R., Goeva A., Martin C.A., Murray E., Vanderburg C.R., Welch J., Chen L.M., Chen F., Macosko E.Z. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019; 363: 1463–7. https://doi.org/10.1038/s41592-022-01409-2.
  15. Stickels R.R., Murray E., Kumar P., Li J., Marshall J.L., Di Bella D.J., Arlotta P., Macosko E.Z., Chen F. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat Biotechnol. 2021; 3: 313–9. https://doi.org/10.1038/s41592-022-01409-2.
  16. Ståhl P.L., Salmén F., Vickovic S., Lundmark A., Navarro J.F., Magnusson J., Giacomello S., Asp M., Westholm J.O., Huss M., Mollbrink A., Linnarsson S., Codeluppi S., Borg Å., Pontén F., Costea P.I., Sahlén P., Mulder J., Bergmann O., Lundeberg J., Frisén J. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016; 78–82. https://doi.org/10.1038/s41592-022-01409-2.
  17. Davis-Marcisak E.F., Deshpande A., Stein-O’Brien G.L., Ho W.J., Laheru D., Jaffee E.M., Fertig E.J., Kagohara L.T. From bench to bedside: single-cell analysis for cancer immunotherapy. Cancer Cell. 2021; 8: 1062–80. https://doi.org/10.1038/s41592-022-01409-2.
  18. Jordan B. Slide-seq: L’analyse d’expression à haute résolution spatiale // Med Sci (Paris). 2019; 35 (6–7): 589–91. https://doi.org/10.1051/medsci/2019099.
  19. Davey H.M., Kell D.B. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev. 1996; 4: 641–96. https://doi.org/10.1051/medsci/2019099.
  20. Chen A., Liao S., Cheng M., Ma K., Wu L., Lai Y., Qiu X., Yang J., Xu J., Hao S., Wang X., Lu H., Chen X., Liu X., Huang X., Li Z., Hong Y., Jiang Y., Peng J., Liu S., Shen M., Liu C., Li Q., Yuan Y., Wei X., Zheng H., Feng W., Wang Z., Liu Y., Wang Z., Yang Y., Xiang H., Han L., Qin B., Guo P., Lai G., Muñoz-Cánoves P., Maxwell P.H., Thiery J.P., Wu Q.F., Zhao F., Chen B., Li M., Dai X., Wang S., Kuang H., Hui J., Wang L., Fei J.F., Wang O., Wei X., Lu H., Wang B., Liu S., Gu Y., Ni M., Zhang W., Mu F., Yin Y., Yang H., Lisby M., Cornall R.J., Mulder J., Uhlén M., Esteban M.A., Li Y., Liu L., Xu X., Wang J. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell. 2022; 10: 1777–92. https://doi.org/10.1051/medsci/2019099.
  21. Fang R., Xia C., Close J.L., Zhang M., He J., Huang Z., Halpern A.R., Long B., Miller J.A., Lein E.S., Zhuang X. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science. 2022; 6601: 56–62. https://doi.org/10.1051/medsci/2019099.
  22. Eisenstein M. How to make spatial maps of gene activity – down to the cellular level. Nature. 2022; 7916: 1036–8. https://doi.org/10.1051/medsci/2019099.
  23. Chen A. Sun Y., Lei Y., Li C., Sha L., Liang Z., Lin F., Yuan N., Li M., Wang K., Yang M., Zhang S., Zhuang Z., Meng J., Song Q., Zhang Y., Xu Y., Cui L., Han L., Yang H., Sun X., Fei T., Chen B., Li W., Huangfu B., Ma K., Li Z., Lin Y., Liu Z., Wang H., Zhong Y., Zhang H., Yu Q., Wang Y., Zhu Z., Liu X., Peng J., Liu C., Chen W., An Y., Xia S., Lu Y., Wang M., Song X., Liu S., Wang Z., Gong C., Huang X., Yuan Y., Zhao Y., Luo Z., Tan X., Liu J., Zheng M., Li S., Huang Y., Hong Y., Huang Z., Li M., Zhang R., Jin M., Li Y., Zhang Hu., Sun S., Bai Y., Cheng M., Hu G., Liu Sh., Wang B., Xiang B., Li Sh., Li H., Chen M., Wang S., Zhang Q., Liu W., Liu Xi., Zhao Q., Lisby M., Wang J., Fang J., Lu Z., Lin Yu., Xie Q., He J., Xu H., Huang W., Wei W., Yang H., Sun Ya., Poo M., Wang Ji., Li Yu., Shen Z., Liu L., Liu Zh., Xu X., Li Ch. Global Spatial Transcriptome of Macaque Brain at single-cell Resolution. bioRxiv. 2022. https://doi.org/10.1051/medsci/2019099.
  24. Liu C., Li R., Li Y., Lin X., Zhao K., Liu Q., Wang S., Yang X., Shi X., Ma Y., Pei C., Wang H., Bao W., Hui J., Yang T., Xu Z., Lai T., Berberoglu M.A., Sahu S.K., Esteban M.A., Ma K., Fan G., Li Y., Liu S., Chen A., Xu X., Dong Z., Liu L. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis. Dev Cell. 2022; 10: 1284–98. https://doi.org/10.1051/medsci/2019099.
  25. Cable D.M., Murray E., Zou L.S., Goeva A., Macosko E.Z., Chen F., Irizarry R.A. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol. 2022; 40: 517–26. https://doi.org/10.1051/medsci/2019099.
  26. Bergenstråhle L., He B., Bergenstråhle J., Abalo X., Mirzazadeh R., Thrane K., Ji A.L., Andersson A., Larsson L., Stakenborg N., Boeckxstaens G., Khavari P., Zou J., Lundeberg J., Maaskola J. Super-resolved spatial transcriptomics by deep data fusion. Nat Biotechnol. 2022; 40: 476–9. https://doi.org/10.1051/medsci/2019099.
  27. Lopez R., Li B., Keren-Shaul H., Boyeau P., Kedmi M., Pilzer D., Jelinski A., Yofe I., David E., Wagner A., Ergen C., Addadi Y., Golani O., Ronchese F., Jordan M.I., Amit I., Yosef N. DestVI identifies continuums of cell types in spatial transcriptomics data. Nat Biotechnol. 2022; 40: 1360–9. https://doi.org/10.1051/medsci/2019099.
  28. Velmeshev D., Schirmer L., Jung D., Haeussler M., Perez Y., Mayer S., Bhaduri A., Goyal N., Rowitch D.H., Kriegstein A.R. Single-cell genomics identifies cell type-specific molecular changes in autism. Science. 2019; 6441: 685–9. https://doi.org/10.1051/medsci/2019099.
  29. Mathys H., Davila-Velderrain J., Peng Z., Gao F., Mohammadi S., Young J.Z., Menon M., He L., Abdurrob F., Jiang X., Martorell A.J., Ransohoff R.M., Hafler B.P., Bennett D.A., Kellis M., Tsai L.H. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. 2019; 7761: 332–7. https://doi.org/10.1051/medsci/2019099.
  30. Maynard K.R., Tippani M., Takahashi Y., Phan B.N., Hyde T.M., Jaffe A.E., Martinowich K. Dotdotdot: an automated approach to quantify multiplex single molecule fluorescent hybridization (smFISH) images in complex tissues. Nucleic Acids Res. 2020; 11. https://doi.org/10.1051/medsci/2019099.
  31. Jaffe A.E., Hoeppner D.J., Saito T., Blanpain L., Ukaigwe J., Burke E.E., Collado-Torres L., Tao R., Tajinda K., Maynard K.R., Tran M.N., Martinowich K., Deep-Soboslay A., Shin J.H., Kleinman J.E., Weinberger D.R., Matsumoto M., Hyde T.M. Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. Nat Neurosci. 2020; 4: 510–9. https://doi.org/10.1051/medsci/2019099.
  32. Dong X., Shi M., Lee M., Toro R., Gravina S., Han W., Yasuda S., Wang T., Zhang Z., Vijg J., Suh Y., Spivack S.D. Global, integrated analysis of methylomes and transcriptomes from laser capture microdissected bronchial and alveolar cells in human lung. Epigenetics. 2018; 3: 264–74. https://doi.org/10.1051/medsci/2019099.
  33. Asp M., Giacomello S., Furth D., Reimegard J., Wardell E., Custodio J., Salmen F., Sundstrom E., Akesson E., Bienko M., Mansson Broberg A., Stahl L P., Sylven C., Lundeberg J. An organ-wide gene expression atlas of the developing human heart. Cell. 2019; 179: 1647–60. https://doi.org/10.1051/medsci/2019099.
  34. Moncada R., Barkley D., Wagner F., Chiodin M., Devlin J.C., Baron M., Hajdu C.H., Simeone D.M., Yanai I. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol. 2020; 3: 333–42. https://doi.org/10.1051/medsci/2019099.
  35. Satterstrom F.K., Kosmicki J.A., Wang J., Breen M.S., De Rubeis S., An J.Y., Peng M., Collins R., Grove J., Klei L., Stevens C., Reichert J., Mulhern M.S., Artomov M., Gerges S., Sheppard B., Xu X., Bhaduri A., Norman U., Brand H., Schwartz G., Nguyen R., Guerrero E.E., Dias C., Betancur C., Cook E.H., Gallagher L., Gill M., Sutcliffe J.S., Thurm A., Zwick M.E., Børglum A.D., State M.W., Cicek A.E., Talkowski M.E., Cutler D.J., Devlin B., Sanders S.J., Roeder K., Daly M.J., Buxbaum J.D. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell. 2020; 3: 568–84. https://doi.org/10.1051/medsci/2019099.
  36. Amezquita R.A., Lun A.T.L., Becht E., Carey V.J., Carpp L.N., Geistlinger L., Marini F., Rue-Albrecht K., Risso D., Soneson C., Waldron L., Pagès H., Smith M.L., Huber W., Morgan M., Gottardo R., Hicks S.C. Orchestrating single-cell analysis with Bioconductor. Nat Methods. 2020; 17: 137–45. https://doi.org/10.1051/medsci/2019099.
  37. Halpern K.B., Shenhav R., Matcovitch-Natan O., Toth B., Lemze D., Golan M., Massasa E.E., Baydatch S., Landen S., Moor A.E., Brandis A., Giladi A., Avihail A.S., David E., Amit I., Itzkovitz S. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature. 2017; 542: 352–6. https://doi.org/10.1051/medsci/2019099.
  38. Xia C., Fan J., Emanuel G., Hao J., Zhuang X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl. Acad. Sci. USA. 2019; 116: 19490–9. https://doi.org/10.1051/medsci/2019099.
  39. Liao M., Liu Y., Yuan J., Wen Y., Xu G., Zhao J., Cheng L., Li J., Wang X., Wang F., Liu L., Amit I., Zhang S., Zhang Z. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 2020; 26: 842–4. https://doi.org/10.1051/medsci/2019099.
  40. Armand E.J., Li J., Xie F., Luo C., Mukamel E.A. Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes. Neuron. 2021; 109: 11–26. https://doi.org/10.1051/medsci/2019099.
  41. Marques S., Zeisel A., Codeluppi S., van Bruggen D., Mendanha Falcão A., Xiao L., Li H., Häring M., Hochgerner H., Romanov R.A., Gyllborg D., Muñoz Manchado A., La Manno G., Lönnerberg P., Floriddia E.M., Rezayee F., Ernfors P., Arenas E., Hjerling-Leffler J., Harkany T., Richardson W.D., Linnarsson S., Castelo-Branco G. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science. 2016; 352: 1326–9. https://doi.org/10.1051/medsci/2019099.
  42. Yao Z., van Velthoven C.T.J., Nguyen T.N., Goldy J., Sedeno-Cortes A.E., Baftizadeh F., Bertagnolli D., Casper T., Chiang M., Crichton K., Ding S.L., Fong O., Garren E., Glandon A., Gouwens N.W., Gray J., Graybuck L.T., Hawrylycz M.J., Hirschstein D., Kroll M., Lathia K., Lee C., Levi B., McMillen D., Mok S., Pham T., Ren Q., Rimorin C., Shapovalova N., Sulc J., Sunkin S.M., Tieu M., Torkelson A., Tung H., Ward K., Dee N., Smith K.A, Tasic B., Zeng H. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell. 2021; 184: 3222–41. https://doi.org/10.1051/medsci/2019099.
  43. Masuda T., Sankowski R., Staszewski O., Böttcher C., Amann L., Sagar, Scheiwe C., Nessler S., Kunz P., van Loo G., Coenen V.A., Reinacher P.C., Michel A., Sure U., Gold R., Grün D., Priller J., Stadelmann C., Prinz M. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019; 566: 388–92. https://doi.org/10.1051/medsci/2019099.
  44. Paisley B. M., Liu Y. GeneMarkeR: A Database and User Interface for scRNA-seq Marker Genes. Front. Genet. 2021; 12. https://doi.org/10.1051/medsci/2019099.
  45. Paik D.T., Cho S., Tian L., Chang H.Y., Wu J.C. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat. Rev. Cardiol. 2020; 17: 457–73. https://doi.org/10.1051/medsci/2019099.
  46. Lohr J.G., Kim S., Gould J., Knoechel B., Drier Y., Cotton M.J., Gray D., Birrer N., Wong B., Ha G., Zhang C.Z., Guo G., Meyerson M., Yee A.J., Boehm J.S., Raje N., Golub T.R. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci. Transl. Med. 2016; 363: 147. https://doi.org/10.1051/medsci/2019099.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies