Key markers of ferroptosis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. Ferroptosis is a type of programmed cell death associated with excessive accumulation of endogenous iron in the cell, accompanied by the production of reactive oxygen species and, as a result, lipid peroxidation. The literature review examines the key markers of ferroptosis, which is one of the types of programmed cell death other than apoptosis, necroptosis, pyroptosis, etc.

Purpose: to collect and process information on the main markers of ferroptosis, which will allow to adapt and optimize the processes of its study.

Material and methods: analysis of literary sources of domestic and foreign origin on a given topic.

Results: articles have been found and analyzed, including those from the last 5 years, confirming the prospects of ferroptosis as a potential pharmacological target. Conclusion. Understanding the main signs of the launch of this process is an integral part of the research work aimed at finding new therapeutic targets associated with the launch of ferroptosis, which, in turn, represents a promising pharmacological model, since It has a high potential for the future treatment of drug-resistant types of pathologies.

全文:

受限制的访问

作者简介

Maria Tokhtueva

Federal State Autonomous Educational Institution of Higher Education “Ural Federal University named after the first President of Russia B.N. Yeltsin” of the Ministry of Science and Higher Education of the Russian Federation

编辑信件的主要联系方式.
Email: maria.tokhtueva@urfu.ru
ORCID iD: 0000-0002-2895-336X

research engineer at the Laboratory of Primary Bioscreening, Cellular and Gene Technologies of the Scientific, Educational and Information Center for Chemical and Pharmaceutical Technologies of the Institute of Chemical Technology

俄罗斯联邦, Mira str., 19, Yekaterinburg, 620002

Vsevolod Melekhin

Federal State Autonomous Educational Institution of Higher Education “Ural Federal University named after the first President of Russia B.N. Yeltsin” of the Ministry of Science and Higher Education of the Russian Federation; Federal State Budgetary Educational Institution of Higher Education “Ural Federal State Medical University”, Healthcare Ministry of Russia

Email: v.v.melekhin@urfu.ru
ORCID iD: 0000-0003-3107-8532

PhD of Medical Sciences, Associate Professor, Head of the Laboratory of Primary Bioscreening, Cellular and Gene Technologies of the Scientific, Educational and Information Center for Chemical and Pharmaceutical Technologies of the Institute of Chemical Technology of the FSAEI HE “Ural Federal University named after the first President of Russia B.N. Yeltsin”; Associate Professor of the Department of Medical Biology and Genetics of the FSAEI HE “Ural Federal State Medical University”

俄罗斯联邦, Mira str., 19, Yekaterinburg, 620002; Repina str., 3, Yekaterinburg, 620028

参考

  1. Stockwell B.R., Jiang X., Gu W. Emerging mechanisms and disease relevance of ferroptosis. Trends in cell biology. 2020; 30 (6): 478–90. doi: 10.1016/j.tcb.2020.02.009.
  2. Kerr J.F.R., Wyllie A.H., Currie A.R. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. British journal of cancer. 1972; 26 (4): 239–57. doi: 10.1038/bjc.1972.33.
  3. Wang Y., Kanneganti T.D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Computational and structural biotechnology journal. 2021; 19: 4641–57. doi: 10.1016/j.csbj.2021.07.038.
  4. Потапнев М.П. Аутофагия, апоптоз, некроз клеток и иммунное распознавание своего и чужого. Иммунология. 2014; 35 (2): 95–102. [Potapnev M.P. Autophagy, apoptosis, cell necrosis and immune recognition of one’s own and another’s. Immunology. 2014; 35 (2): 95–102 (in Russian)]
  5. Hickman J.A. Apoptosis and chemotherapy resistance. European J. of Cancer. 1996; 32 (6): 921–6. doi: 10.1016/0959-8049(96)00080-9.
  6. Meirow D., Biederman H., Anderson R.A., Wallace W.H. B. Toxicity of chemotherapy and radiation on female reproduction. Clinical obstetrics and gynecology. 2010; 53 (4): 727–39. doi: 10.1097/GRF.0b013e3181f96b54.
  7. Rybak L.P., Mukherjea D., Ramkumar V. Mechanisms of Cisplatin-Induced Ototoxicity and Prevention. Debashree MukherjeaVickram Ramkumar. Seminars in Hearing. 2019; 40 (2): 197–204. doi: 10.1055/s-0039-1684048.
  8. Dixon S.J., Lemberg K.M., Lamprecht M.R., Skouta R., Zaitsev E.M., Gleason C.E., Patel D.N., Bauer A.J., Cantley A.M., Yang W.S., Morrison III B., Stockwell B.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149 (5): 1060–72. doi: 10.1016/j.cell.2012.03.042.
  9. Du Y., Guo Z. Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discovery. 2022; 8 (1): 501. doi: 10.1038/s41420-022-01297-7.
  10. Чубенко В.А. МетаболизМ железа и ферроптоз как терапевтическая Мишень. Практическая онкология. 2022; 23 (3): 127–32. doi: 10.31917/2303127 [Chubenko V.A. Iron metabolism and ferroptosis as a therapeutic Target. Practical oncology. 2022; 23 (3): 127–32. doi: 10.31917/2303127 (in Russian)].
  11. Jiang X., Stockwell B.R., Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nature reviews Molecular cell biology. 2021; 22 (4): 266–82. doi: 10.1038/s41580-020-00324-8.
  12. Dolma S., Lessnick S.L., Hahn W.C., Stockwell B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer cell. 2003; 3 (3): 285–96. doi: 10.1016/s1535-6108(03)00050-3.
  13. Yang W.S., Stockwell B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chemistry & biology. 2008; 15 (3): 234–45. doi: 10.1016/j.chembiol.2008.02.010.
  14. Li J., Cao F., Yin. H.L., Huang Z.J., Lin. Z.T., Mao N., Sun B., Wang G. Ferroptosis: past, present and future. Cell death & disease. 2020; 11 (2): 88. doi: 10.1038/s41419-020-2298-2.
  15. Lee S., Hwang N., Seok B.G., Lee S., Lee S.J., Chung S.W. Autophagy mediates an amplification loop during ferroptosis. Cell Death & Disease. 2023; 14 (7): 464. doi: 10.1038/s41419-023-05978-8.
  16. Battaglia A.M., Chirillo R., Aversa I., Sacco A., Costanzo F., Biamonte F. Ferroptosis and cancer: mitochondria meet the “iron maiden” cell death. Cells. 2020; 9 (6): 1505. doi: 10.3390/cells9061505.
  17. Вартанян А.А. Метаболизм железа, ферроптоз, рак. Российский биотерапевтический журнал. 2017; 16 (3): 14–20. doi: 10.17650/1726-9784-2017-16-3-14-20. [Vartanian A.A. Iron metabolism, ferroptosis and cancer. Russian Journal of Biotherapy. 2017; 16 (3): 14–20. doi: 10.17650/1726-9784-2017-16-3-14-20 (in Russian)].
  18. Shah R., Shchepinov M.S., Pratt D.A. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS central science. 2018; 4 (3): 387–96. doi: 10.1021/acscentsci.7b00589.
  19. Haeggstrom J.Z., Funk C.D. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chemical reviews. 2011; 111 (10): 5866–98. doi: 10.1021/cr200246d.
  20. Zou Y., Li. H., Graham E.T., Deik A.A., Eaton J.K., Wang W., Sandoval-Gomez G., Clish C.B., Doench J.G., Schreiber S.L. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nature chemical biology. 2020; 16 (3): 302–9. doi: 10.1038/s41589-020-0472-6.
  21. Zhang H.L., Hu B.X., Li Z.L., Du T., Shan J.L., Ye Z.P., Peng X.D., Li X., Huang Y., Zhu X.Y., Chen Y.H., Feng G.K., Yang D., Deng R., Zhu X.F. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nature cell biology. 2022; 24 (1): 88–98. doi: 10.1038/s41556-021-00818-3.
  22. Новиков В.Е., Левченкова О.С., Пожилова Е.В. Роль активных форм кислорода в физиологии и патологии клетки и их фармакологическая регуляция. Обзоры по клинической фармакологии и лекарственной терапии. 2014; 12 (4): 13–21. doi: 10.17816/RCF12413-21. [Novikov V.E., Levchenkova O.S., Pozhilova E. The role of reactive oxygen species in cell physiology and pathology and their pharmacological regulation. Reviews of clinical pharmacology and drug therapy. 2014; 12 (4): 13–21. doi: 10.17816/RCF12413-21. (in Russian)].
  23. Prasad A., Pospíšil P., Tada M. Reactive oxygen species (ROS) detection methods in biological system. Frontiers in physiology. 2019; 1316.
  24. Chen X., Comish P.B., Tang D., Kang R. Characteristics and biomarkers of ferroptosis. Frontiers in cell and developmental biology. 2021; 9: 637162. doi: 10.3389/fphys.2019.01316.
  25. Xie Y., Hou W., Yu Y., Huang J., Sun X., Kang R., Tang D. Ferroptosis: process and function. Cell Death & Differentiation. 2016; 23 (3): 369–79. doi: 10.1038/cdd.2015.158.
  26. Feng H., Schorpp K., Jin J., Yozwiak C.E., Hoffstrom B.G., Decker A.M., Rajbhandari P., Stokes M.E., Bender H.G., Csuka J.M., Upadhyayula P.S., Canoll P., Uchida. K., Soni R.K., Hadian K., Stockwell B.R. Transferrin Receptor Is a Specific Ferroptosis Marker. Cell Reports. 2020; 30 (10): 3411–23. doi: 10.1016/j.celrep.2020.02.049.
  27. Sun X., Ou Z., Xie M., Kang R., Fan Y., Niu X., Wang H., Cao L., Tang D. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 2015; 34 (45): 5617–25. doi: 10.1038/onc.2015.32.
  28. Hou K., Liu L., Fang Z.H., Zong W.X., Sun D., Gue Z., Cao. L. The role of ferroptosis in cardio-oncology. Archives of Toxicology. 2024; 98 (3): 1–26. doi: 10.1007/s00204-023-03665-3.
  29. Kagan V.E., Mao G., Qu F., Angeli J.P., Doll S., Croix C.S., Dar H.H., Liu B., Tyurin V.A. Ritov V.B., Kapralov A.A., Amoscato A.A., Jiang J., Anthonymuthu T., Mohammadyani D., Yang O., Proneth B., Klein-Seetharaman J., Watkins S., Bahar I., Greenberger J., Mallampalli R.K., Stockwell B.R., Tyurina Y.Y., Conrad M., Bayir H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology. 2017; 13 (1): 81–90. doi: 10.1038/nchembio.2238.
  30. Lyamzaev K.G., Panteleeva A.A., Simonyan R.A., Avetisyan A.A., Chernyak B. V. Mitochondrial Lipid Peroxidation Is Responsible for Ferroptosis. Cells. 2023; 12 (4): 611. doi: 10.3390/cells12040611.
  31. Von Krusenstiern A.N., Robson R.N., Qian N., Qiu B., Hu F., Reznik E., Smith N., Zandkarimi F., Estes V.M., Dupont M., Hirschhorn T., Shchepinov M.S., Min W., Woerpel K.A., Stockwell B.R. Identification of essential sites of lipid peroxidation in ferroptosis. Nature Chemical Biology. 2023; 19 (6): 1–12. doi: 10.1038/s41589-022-01249-3.
  32. Liu Y., Lu S., Wu L.L., Yang L., Yang L., Wang J. The diversified role of mitochondria in ferroptosis in cancer. Cell Death & Disease. 2023; 14 (8): 519. doi: 10.1038/s41419-023-06045-y.
  33. Ma T., Du J., Zhang Y., Wang Y., Wang B., Zhang T. GPX4-independent ferroptosis – a new strategy in disease’s therapy. Cell death discovery. 2022; 8 (1): 434. doi: 10.1038/s41420-022-01212-0.
  34. Wu Y., Shi H., Zheng J., Yang. Y., Lei X., Qian X., Zhu J. Overexpression of FSP1 Ameliorates ferroptosis via PI3K/AKT/GSK3β pathway in PC12 cells with Oxygen-Glucose Deprivation/Reoxygenation. Heliyon. 2023; 9 (8): e18449. doi: 10.1016/j.heliyon.
  35. Зенков Н.К., Колпаков А.Р., Меньщикова Е.Б. Редокс-чувствительная система Keap1/NRF2/ARE как фармакологическая мишень при сердечно-сосудистой патологии. Сибирский научный медицинский журнал. 2015; 35 (5): 5–25. [Zenkov N.K., Kolpakov A.R., Men’shhikova E.B. The redox-sensitive Keap1/NRF2/ARE system as a pharmacological target in cardiovascular pathology. Siberian Scientific Medical J. 2015; 35 (5): 5–25 (in Russian)].
  36. Song X., Long D. NRF2 and ferroptosis: a new research direction for neurodegenerative diseases. Frontiers in neuroscience. 2020; 14: 267. doi: 10.3389/fnins.2020.00267.
  37. Chang L.C., Chiang S.K., Chen S.E., Yu Y.L., Chou R.H., Chang W. C. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett. 2018; 416: 124–37. doi: 10.1016/j.canlet.2017.12.025.
  38. Dodson M., Castro-Portuguez R., Zhang D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox biology. 2019; 23: 101107. doi: 10.1016/j.redox.2019.101107.
  39. Anandhan A. Dodson M., Shakya A. , Chen J., Liu P., Wei Y., Tan H., Wang Q., Jiang Z., Yang K., Garcia J.G., Chambers S.K., Chapman E., Ooi A., Yang-Hartwich Y., Stockwell B.R., Zhang D.D. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Science Advances. 2023; 9 (5): eade9585. doi: 10.1126/sciadv.ade9585.
  40. Jin Y., Qiu J., Lu X., Li G. C-MYC inhibited ferroptosis and promoted immune evasion in ovarian cancer cells through NCOA4 mediated ferritin autophagy. Cells. 2022; 11 (24): 4127. doi: 10.3390/cells11244127.
  41. Liu Y., Gu W. p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death & Differentiation. 2022; 29 (5): 895–910. doi: 10.1038/s41418-022-00943-y.
  42. Mishima E., Nakamura T., Zheng J., Zhang W., Dias Mourão A. S., Sennhenn P., Conrad M. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature. 2023; 619 (7968): 9–18. doi: 10.1038/s41586-023-06269-0.
  43. Yi J., Zhu J., Wu J., Thompson C. B., Jiang X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proceedings of the National Academy of Sciences. 2020; 117 (49): 31189–97. doi: 10.1073/pnas.2017152117.
  44. Wang Z., Li M., Liu Y., Qiao Z., Bai T., Yang L., Liu B. Dihydroartemisinin triggers ferroptosis in primary liver cancer cells by promoting and unfolded protein response-induced upregulation of CHAC1 expression. Oncology reports. 2021; 46 (5): 240. doi: 10.3892/or.2021.8191.
  45. Ding K., Liu C., Li. L., Yang M., Jiang N., Luo S., Sun L. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism. Chinese Medical J. 2023; 136 (21): 2521–37. doi: 10.1097/CM9.0000000000002533.
  46. Ding Y., Chen X., Liu C., Ge W., Wang Q., Hao X., Wang M., Chen Y., Zhang Q. Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. Journal of hematology & oncology. 2021; 14 (1): 1–21. doi: 10.1186/s13045-020-01016-8.
  47. Tsuji Y. Transmembrane protein western blotting: Impact of sample preparation on detection of SLC11A2 (DMT1) and SLC40A1 (ferroportin). PLoS One. 2020; 15 (7): e0235563. doi: 10.1371/journal.pone.0235563.
  48. Dong H., Xia Y., Jin S., Xue C., Wang Y., Hu R., Jiang H. Nrf2 attenuates ferroptosis-mediated IIR-ALI by modulating TERT and SLC7A11. Cell death & disease. 2021; 12 (11): 1027. doi: 10.1038/s41419-021-04307-1.
  49. Jiang L., Kon N., Li T., Wang S.J., Su T., Hibshoosh H., Baer R., Gu W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015; 520 (7545): 57–62. doi: 10.1038/nature14344.
  50. Hu Q., Wei W., Wu D., Huang F., Li M., Li W., Yin J., Peng Y., Lu Y., Zhao Q., Liu L. Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to erastin-induced ferroptosis. Frontiers in cell and developmental biology. 2022; 10: 810327. doi: 10.3389/fcell.2022.810327.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The mechanism of ferroptosis: Fe3+ is imported into the cell through the Tf/TFR1 system (Tf – transferrin, TFR1 – transferrin receptor 1), after which it is localized in the endosome and converted to Fe2+ using STEAP3 ferrieductase. Then the ferrous ion membrane transport protein (DMT1 or SLC11A2) mediates the release of Fe2+, the excess of which increases the intensity of the Fenton reaction, generating reactive oxygen species (ROS), causing lipid peroxidation (POL). The POL chain reaction can also be triggered by iron-dependent enzymes lipoxygenases (LOX) or oxidoreductases (POR). Normally, iron is disposed of from the cell by ferroportin (SLC11A3) or into the mitochondrial metabolic system, and is also concentrated in ferritin, consisting of a light (FTL) and heavy chain (FTH1), but if this system is disrupted, ferroptosis is triggered

下载 (501KB)
3. Fig. 2. The chain reaction of the formation of fatty acid peroxide radicals is an increased production of particles having an unpaired electron (the structure of lipids includes a CH2-group from which a free radical (initiator of oxidation) can take away an electron, thereby converting a lipid containing this acid into a free radical CH•, triggering a chain reaction). (a) LH – lipid, which is part of the structure of cell membranes, reacts with ROS (OH•), forming the free radical L•, which, in turn, attaches O2, resulting in the formation of the peroxyradical LOO•, which subsequently acts as an inducer of the oxidative process and takes away an electron from LH to form L• and LOOH lipid peroxide; (b) the formation of LOOH lipid peroxide can also be initiated enzymatically by lipoxygenases (LOX), as a result of which the excess LOOH in the reaction catalyzed by iron turns into the alkyl radical LO•, inducing the oxidation of LH, with the formation of L• and, as a result, the launch of a new oxidation reaction

下载 (485KB)
4. Fig. 3. The system of formation of lipid hydroperoxides in cells: polyunsaturated fatty acid (PUFA) under the action of a synthetase of a long-chain member of the family 4 (ACSL4) is converted into a PUFA-CoA ester, after which, in a reaction catalyzed by lysophosphatidylcholine acyltransferase 3 (LPCAT3), into glycerophospholipids (PL-PUFA), which under the action of lipoxygenases (LOX) or oxidoreductases (POR) form polyunsaturated fatty acid peroxides (PL-PUFA-OOH). A long-chain member of the acyl-CoA synthetase 3 (ACSL3) family, in turn, converts monounsaturated fatty acids (MUFA) into acyl-CoA ester to bind to membrane phospholipids, thereby protecting cells from ferroptosis

下载 (140KB)
5. Fig. 4. Antioxidant protection systems of the cell, in violation of which there is no proper utilization of reactive oxygen species and oxidative processes are initiated in the form of lipid peroxidation and, as a result, ferroptosis: 1 – Xc– system (amino acid antiporter), mediating the transport of cysteine into the cell, which is a precursor of GSH (glutamate-cysteine ligase), which is the main reducing agent a substrate for GPX4 (selenium–containing antioxidant enzyme, glutathione peroxidase 4) – a regulator of the level of hydroperoxides in complex lipids (due to their inactivation reaction); 2 – the GTP (guanosine-5’-triphosphate), GCH1 (cyclohydrolase-1) and BH4 (tetrahydrobiopterin) pathway, which creates a redox cycle leading to a decrease in the number of oxidative radicals due to their conversion into inactive forms by BH4; 3 – the FSP1 system (ferroptosis suppressor protein 1), which regulates the reduction of CoQ10 (extramitochondrial ubiquinone) to CoQH2 (ubiquinol), which is a blocker of the formation of hydroperoxides in cells

下载 (220KB)

版权所有 © Russkiy Vrach Publishing House, 2024