Molecular aspects of pathogenesis of chronic lymphocytic leukemia
- Authors: Garifullina A.G.1, Gilyazova I.R.1,2,3, Abdeeva G.R.1, Kudlai D.A.4,5,6, Nizamova A.R.2, Minyazova A.A.1, Bakirov B.A.1
-
Affiliations:
- Bashkir State Medical University of the Ministry of Health of the Russian Federation
- Institute of Biochemistry and Genetics of the Ufa Federal Research Center of the Russian Academy of Sciences
- Saint Petersburg State University
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
- M.V. Lomonosov Moscow State University
- State Scientific Center of the Institute of Immunology of the Federal Medical-Biological Agency
- Issue: Vol 22, No 6 (2024)
- Pages: 21-28
- Section: Reviews
- URL: https://journals.eco-vector.com/1728-2918/article/view/677282
- DOI: https://doi.org/10.29296/24999490-2024-06-03
- ID: 677282
Cite item
Abstract
Introduction. Chronic lymphocytic leukemia (CLL) is the most common leukemia type in adults. CLL is characterized by significant changes in the patient's genome, including both various mutations and epigenetic changes. These changes currently play an important role in the diagnosis, prognosis and treatment of the disease.
The aim of the work is to review the scientific literature on genetic mutations that occur in chronic lymphocytic leukemia.
Material and methods. The following databases were used to search for published studies: PubMed, Web of Science, EBSCOhost and Scopus. The search was performed in the time period from the date of creation of the corresponding databases to October 2024. A study was considered suitable if it was original, included the clinical and pathogenetic features of CLL.
Results. From the presented analysis of sources, it could be concluded that the main genetic changes in CLL are chromosomal mutations. Moreover, the most common anomalies are del(13q14) and del(17p). The microenvironment in CLL is also very important. The behavior of CLL cells depends on signals originating from non-tumor cells in the microenvironment. The tumor genome of many patients with CLL is characterized by the presence of mutations in the genes of the variable region of the heavy chain of immunoglobulins, while in other patients the above-mentioned genes do not contain mutations, which is associated with an unfavorable prognosis of the disease.
Conclusions. The review analyzes various types of anomalies in CLL. The main stages of the pathogenetic mechanism in the evolution of the disease and possible methods of treatment depending on the genetic mutation are also examined.
Full Text

About the authors
Adelina Garifovna Garifullina
Bashkir State Medical University of the Ministry of Health of the Russian Federation
Author for correspondence.
Email: nakieva-1@yandex.ru
ORCID iD: 0000-0003-4191-8638
research resident, oncologist resident
Russian Federation, Lenin str., 3, Ufa, Republic of Bashkortostan, 450008Irina Rishatovna Gilyazova
Bashkir State Medical University of the Ministry of Health of the Russian Federation; Institute of Biochemistry and Genetics of the Ufa Federal Research Center of the Russian Academy of Sciences; Saint Petersburg State University
Email: gilyasova_irina@mail.ru
ORCID iD: 0000-0001-9499-5632
Senior Researcher, Senior Researcher, Laboratory of Molecular Genetics, Institute of Urology and Clinical Oncology, Senior Researcher, Candidate of Biological Sciences, Associate Professor
Russian Federation, Lenin str., 3, Ufa, Republic of Bashkortostan, 450008; Oktyabrya avenue, 71, Ufa, Republic of Bashkortostan, 450054; Universitetskaya nab., 7–9, Saint Petersburg, 199034Gulshat Ruslanovna Abdeeva
Bashkir State Medical University of the Ministry of Health of the Russian Federation
Email: grabdeeva@bashgmu.ru
ORCID iD: 0000-0001-7189-5532
Junior Researcher, Institute of Urology and Clinical Oncology
Russian Federation, Lenin str., 3, Ufa, Republic of Bashkortostan, 450008Dmitry Anatolyevich Kudlai
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation; M.V. Lomonosov Moscow State University; State Scientific Center of the Institute of Immunology of the Federal Medical-Biological Agency
Email: D624254@gmail.com
ORCID iD: 0000-0003-1878-4467
Corresponding Member of the Russian Academy of Sciences, Professor, Department of Pharmacology, Institute of Pharmacy, Deputy Dean for Innovation and Translational Work of the Faculty of Fundamental Medicine, Professor of the Department of Pharmacognosy and Industrial Pharmacy of the Faculty of Fundamental Medicine, Leading Researcher of the Laboratory of Personalized Medicine and Molecular Immunology No. 71, Doctor of Medical Sciences, Professor
Russian Federation, st. Trubetskaya, 8, building 2, Moscow, 119991; Leninskie Gory St., 1, Moscow, 119991; Kashirskoe Shosse St., 24, Moscow, 115522Aigul Rinatovna Nizamova
Institute of Biochemistry and Genetics of the Ufa Federal Research Center of the Russian Academy of Sciences
Email: nizamova_aigool@mail.ru
ORCID iD: 0000-0001-8065-8942
Junior Researcher
Russian Federation, Oktyabrya avenue, 71, Ufa, Republic of Bashkortostan, 450054Adelina Airatovna Minyazova
Bashkir State Medical University of the Ministry of Health of the Russian Federation
Email: nizamova_aigool@mail.ru
ORCID iD: 0009-0005-6951-9825
6th year student, Faculty of Pediatrics
Russian Federation, Lenin str., 3, Ufa, Republic of Bashkortostan, 450008Bulat Akhatovich Bakirov
Bashkir State Medical University of the Ministry of Health of the Russian Federation
Email: bakirovb@gmail.com
ORCID iD: 0000-0002-3297-1608
Head of the Department of Hospital Therapy No.2, Doctor of Medical Sciences, Associate Professor
Russian Federation, Lenin str., 3, Ufa, Republic of Bashkortostan, 450008References
- Chronic Lymphocytic Leukemia. Cancer Stat Facts. [Электронное издание]. Режим доступа: https://seer.cancer.gov/statfacts/html/clyl.html. Chronic Lymphocytic Leukemia. Cancer Stat Facts. [Electronic resource]. Access mode: https://seer.cancer.gov/statfacts/html/clyl.html.
- Sant M., Allemani C., Tereanu C., De Angelis R., Capocaccia R., Visser O., Marcos-Gragera R. et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood. 2010; 116 (19): 3724–34. https://doi.org/10.1182/blood-2010-05-282632
- Hamblin T.J., Davis Z., Gardiner A., Oscier D.G., Stevenson F.K. Unmutated Ig VH Genes Are Associated With a More Aggressive Form of Chronic Lymphocytic Leukemia. Blood. 1999; 94 (6): 1848–54. https://doi.org/10.1182/blood.V94.6.1848
- Klein U., Lia M., Crespo M., Siegel R., Shen Q., Mo T., Ambesi-Impiombato A. et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010; 17 (1): 28–40. https://doi.org/10.1016/j.ccr.2009.11.019
- Thompson P.A., Srivastava J., Peterson C., Strati P., Jorgensen J.L., Hether T., Keating M.J. et al. Minimal residual disease undetectable by next-generation sequencing predicts improved outcome in CLL after chemoimmunotherapy. Blood. 2019; 134 (22): 1951–9. https://doi.org/10.1182/blood.2019001077
- Hallek M., Cheson B.D., Catovsky D., Caligaris-Cappio F., Dighiero G., Döhner H., Hillmen P. et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018; 131 (25): 2745–60. https://doi.org/10.1182/blood-2017-09-806398
- Kikushige Y., Ishikawa F., Miyamoto T., Shima T., Urata S., Yoshimoto G., Mori Y. et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011; 20 (2): 246–59. https://doi.org/10.1016/j.ccr.2011.06.029
- Döhner H., Stilgenbauer S., Benner A., Leupolt E., Kröber A., Bullinger L., Döhner K., Bentz M., Lichter P. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J. Med. 2000; 343 (26): 1910–6. https://doi.org/10.1056/NEJM200012283432602
- Hallek M., Fischer K., Fingerle-Rowson G., Fink A.M., Busch R., Mayer J., Hensel M. et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet Lond Engl. 2010; 376 (9747): 1164–74. https://doi.org/10.1016/S0140-6736(10)61381-5
- Zenz T., Vollmer D., Trbusek M., Smardova J., Benner A., Soussi T., Helfrich H. et al. TP53 mutation profile in chronic lymphocytic leukemia: evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia. 2010; 24 (12): 2072–9. https://doi.org/10.1038/leu.2010.208
- Seiffert M., Dietrich S., Jethwa A., Glimm H., Lichter P., Zenz T. Exploiting biological diversity and genomic aberrations in chronic lymphocytic leukemia. Leuk Lymphoma. 2012; 53 (6): 1023–31. https://doi.org/10.3109/10428194.2011.631638
- Zenz T., Mertens D., Küppers R., Döhner H., Stilgenbauer S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 2010; 10 (1): 37–50. https://doi.org/10.1038/nrc2764
- Quesada V., Conde L., Villamor N., Ordóñez G.R., Jares P., Bassaganyas L., Ramsay A.J. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2011; 44 (1): 47–52. https://doi.org/10.1038/ng.1032
- Döhner H., Stilgenbauer S., James M.R., Benner A., Weilguni T., Bentz M., Fischer K., Hunstein W., Lichter P. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood. 1997; 89 (7): 2516–22.
- Landau D.A., Tausch E., Taylor-Weiner A.N., Stewart C., Reiter J.G., Bahlo J., Kluth S. et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015; 526 (7574): 525–30. https://doi.org/10.1038/nature15395
- Puente X.S., Pinyol M., Quesada V., Conde L., Ordóñez G.R., Villamor N., Escaramis G. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011; 475 (7354): 101–5. https://doi.org/10.1038/nature10113
- Puente X.S., Beà S., Valdés-Mas R., Villamor N., Gutiérrez-Abril J., Martin-Subero J.I., Munar M., Rubio-Pérez C. et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015; 526 (7574): 519–24. https://doi.org/10.1038/nature14666
- Jackson S.P., Bartek J. The DNA-damage response in human biology and disease. Nature. 2009; 461 (7267): 1071–8. https://doi.org/10.1038/nature08467
- Calin G.A., Dumitru C.D., Shimizu M., Bichi R., Zupo S., Noch E., Aldler H. et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002; 99 (24): 15524–9. https://doi.org/10.1073/pnas.242606799
- Fabbri M., Bottoni A., Shimizu M., Spizzo R., Nicoloso M.S., Rossi S., Barbarotto E. et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011; 305 (1): 59–67. https://doi.org/10.1001/jama.2010.1919
- Mraz M., Kipps T.J. MicroRNAs and B cell receptor signaling in chronic lymphocytic leukemia. Leuk Lymphoma. 2013; 54 (8): 1836–9. https://doi.org/10.3109/10428194.2013.796055
- Balatti V., Rizzotto L., Miller C., Palamarchuk A., Fadda P., Pandolfo R., Rassenti L.Z., Hertlein E. et al. TCL1 targeting miR-3676 is codeleted with tumor protein p53 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2015; 112 (7): 2169–74. https://doi.org/10.1073/pnas.1500010112
- Bichi R., Shinton S.A., Martin E.S., Koval A., Calin G.A., Cesari R., Russo G., Hardy R.R., Croce C.M. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA. 2002; 99 (10): 6955–60. https://doi.org/10.1073/pnas.102181599
- Costinean S., Zanesi N., Pekarsky Y., Tili E., Volinia S., Heerema N., Croce C.M. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA. 2006; 103 (18): 7024–9. https://doi.org/10.1073/pnas.0602266103
- Cui B., Chen L., Zhang S., Mraz M., Fecteau J.F., Yu J., Ghia E.M. et al. MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood. 2014; 124 (4): 546–54. https://doi.org/10.1182/blood-2014-03-559690
- Cahill N., Bergh A.C., Kanduri M., Göransson-Kultima H., Mansouri L., Isaksson A., Ryan F., Smedby K.E., Juliusson G., Sundström C., Rosén A., Rosenquist R. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments. Leukemia. 2013; 27 (1): 150–8. https://doi.org/10.1038/leu.2012.245
- Wahlfors J., Hiltunen H., Heinonen K., Hämäläinen E., Alhonen L., Jänne J. Genomic hypomethylation in human chronic lymphocytic leukemia. Blood. 1992; 80 (8): 2074–80.
- Ziller M.J., Gu H., Müller F., Donaghey J., Tsai L.T., Kohlbacher O., De Jager P.L., Rosen E.D., Bennett D.A., Bernstein B.E., Gnirke A., Meissner A. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013; 500 (7463): 477–81. https://doi.org/10.1038/nature12433
- Kulis M., Heath S., Bibikova M., Queirós A.C., Navarro A., Clot G., Martinez-Trillos A. et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012; 44 (11): 1236–42. https://doi.org/10.1038/ng.2443
- Landau D.A., Clement K., Ziller M.J., Boyle P., Fan J., Gu H., Stevenson K. et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell. 2014; 26 (6): 813–25. https://doi.org/10.1016/j.ccell.2014.10.012
- Oakes C.C., Claus R., Gu L., Assenov Y., Hüllein J., Zucknick M., Bieg M., Brocks D. et al. Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia. Cancer Discov. 2014; 4 (3): 348–61. https://doi.org/10.1158/2159-8290.CD-13-0349
- Pei L., Choi J.H., Liu J., Lee E.J., McCarthy B., Wilson J.M., Speir E. et al. Genome-wide DNA methylation analysis reveals novel epigenetic changes in chronic lymphocytic leukemia. Epigenetics. 2012; 7 (6): 567–78. https://doi.org/10.4161/epi.20237
- Queirós A.C., Villamor N., Clot G., Martinez-Trillos A., Kulis M., Navarro A., Penas E.M. et al. A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia. 2015; 29 (3): 598–605. https://doi.org/10.1038/leu.2014.252
- Bhoi S., Ljungström V., Baliakas P., Mattsson M., Smedby K.E., Juliusson G., Rosenquist R. et al. Prognostic impact of epigenetic classification in chronic lymphocytic leukemia: The case of subset #2. Epigenetics. 2016; 11 (6): 449–55. https://doi.org/10.1080/15592294.2016.1178432
- Oakes C.C., Seifert M., Assenov Y., Gu L., Przekopowitz M., Ruppert A.S., Wang Q. et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet. 2016; 48 (3): 253–64. https://doi.org/10.1038/ng.3488
- Herishanu Y., Pérez-Galán P., Liu D., Biancotto A., Pittaluga S., Vire, B., Gibellini F. et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011; 117 (2): 563–74. https://doi.org/10.1182/blood-2010-05-284984
- Packham G., Krysov S., Allen A., Savelyeva N., Steele A.J., Forconi F., Stevenson F.K. The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: proliferation or anergy. Haematologica. 2014; 99 (7): 1138–48. https://doi.org/10.3324/haematol.2013.098384
- Endo T., Nishio M., Enzler T., Cottam H.B., Fukuda T., James D.F., Karin M., Kipps T. J. BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-kappaB pathway. Blood. 2007; 109 (2): 703–10. https://doi.org/10.1182/blood-2006-06-027755
- Cui B., Chen L., Zhang S., Mraz M., Fecteau J.F., Yu J., Ghia E.M. et al. MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood. 2014; 124 (4): 546–54. https://doi.org/10.1182/blood-2014-03-559690
- Aguilar-Hernandez M.M., Blunt M.D., Dobson R., Yeomans A., Thirdborough S., Larrayoz M., Smith L.D. et al. IL-4 enhances expression and function of surface IgM in CLL cells. Blood. 2016; 127 (24): 3015–25. https://doi.org/10.1182/blood-2015-11-682906
- Lu D., Zhao Y., Tawatao R., Cottam H.B., Sen M., Leoni L.M., Kipps T.J., Corr M., Carson D.A. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2004; 101 (9): 3118–23. https://doi.org/10.1073/pnas.0308648100
- Yu J., Chen L., Cui B., Widhopf G.F., 2nd, Shen Z., Wu R., Zhang L., Zhang S., Briggs S. P., Kipps T.J. Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation. J. Clin. Invest. 2016; 126 (2): 585–98. https://doi.org/10.1172/JCI83535
- High-level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia. PubMed. Accessed August 27, 2024. https://pubmed.ncbi.nlm.nih.gov/27815263/
- Seke Etet P.F., Vecchio L., Nwabo Kamdje A.H. Interactions between bone marrow stromal microenvironment and B-chronic lymphocytic leukemia cells: any role for Notch, Wnt and Hh signaling pathways? Cell Signal. 2012; 24 (7): 1433–43. https://doi.org/10.1016/j.cellsig.2012.03.008
- Decker S., Zirlik K., Djebatchie L., Hartmann D., Ihorst G., Schmitt-Graeff A., Herchenbach D. et al. Trisomy 12 and elevated GLI1 and PTCH1 transcript levels are biomarkers for Hedgehog-inhibitor responsiveness in CLL. Blood. 2012; 119 (4): 997–1007. https://doi.org/10.1182/blood-2011-06-359075
- De Falco F., Sabatini R., Del Papa B., Falzetti F., Di Ianni M., Sportoletti P., Baldoni S. et al. Notch signaling sustains the expression of Mcl-1 and the activity of eIF4E to promote cell survival in CLL. Oncotarget. 2015; 6 (18): 16559–72. https://doi.org/10.18632/oncotarget.4116
- Coelho V., Krysov S., Steele A., Sanchez Hidalgo M., Johnson P.W., Chana P.S., Packham G., Stevenson F.K., Forconi F. Identification in CLL of circulating intraclonal subgroups with varying B-cell receptor expression and function. Blood. 2013; 122 (15). https://doi.org/10.1182/blood-2013-02-485425
- Burger J.A., Burger M., Kipps T.J. Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood. 1999; 94 (11). Accessed August 27, 2024. https://pubmed.ncbi.nlm.nih.gov/10572077/
- Burger J.A., Tsukada N., Burger M., Zvaifler N.J., Dell’Aquila M., Kipps T.J. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood. 2000; 96 (8): 2655–63.
- Calissano C., Damle R.N., Marsilio S., Yan X.J., Yancopoulos S., Hayes G., Emson C. et al. Intraclonal complexity in chronic lymphocytic leukemia: fractions enriched in recently born/divided and older/quiescent cells. Mol Med Camb Mass. 2011; 17 (11–12). https://doi.org/10.2119/molmed.2011.00360
- Pepper C., Buggins A.G., Jones C.H., Walsby E.J., Forconi F., Pratt G., Devereux S., Stevenson F.K., Fegan C. Phenotypic heterogeneity in IGHV-mutated CLL patients has prognostic impact and identifies a subset with increased sensitivity to BTK and PI3Kδ inhibition. Leukemia. 2015; 29 (3): 744–7. https://doi.org/10.1038/leu.2014.308
- Juliusson G., Oscier D.G., Fitchett M., Ross F.M., Stockdill G., Mackie M.J., Parker A.C. et al. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N. Engl. J. Med. 1990; 323 (11): 720–4. https://doi.org/10.1056/NEJM199009133231105
- Haferlach C., Dicker F., Schnittger S., Kern W., Haferlach T. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 2007; 21 (12): 2442–51. https://doi.org/10.1038/sj.leu.2404935
- Edelmann J., Holzmann K., Miller F., Winkler D., Bühler A., Zenz T., Bullinger L. et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood. 2012; 120 (24): 4783–94. https://doi.org/10.1182/blood-2012-04-423517
- Delgado J., Salaverria I., Baumann T., Martinez-Trillos A., Lee E., Jiménez L., Navarro A. et al. Genomic complexity and IGHV mutational status are key predictors of outcome of chronic lymphocytic leukemia patients with TP53 disruption. Haematologica. 2014; 99 (11): 231–4. https://doi.org/10.3324/haematol.2014.108365
- Thompson P.A., Stingo F., Keating M.J., Ferrajoli A., Burger J.A., Wierda W.G., Kadia T.M., O'Brien S.M. Outcomes of patients with chronic lymphocytic leukemia treated with first-line idelalisib plus rituximab after cessation of treatment for toxicity. Cancer. 2016; 122 (16): 2505–11. https://doi.org/10.1002/cncr.30069
- Baliakas P., Jeromin S., Iskas M., Puiggros A., Plevova K., Nguyen-Khac F., Davis Z. et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood. 2019; 133 (11): 1205–16. https://doi.org/10.1182/blood-2018-09-873083
- Landgren O., Albitar M., Ma W., Abbasi F., Hayes R.B., Ghia P., Marti G.E., Caporaso N.E. B-cell clones as early markers for chronic lymphocytic leukemia. N. Engl. J. Med. 2009; 360 (7): 659–67. https://doi.org/10.1056/NEJMoa0806122
- Criado I., Rodriguez-Caballero A., Gutiérrez M.L., Pedreira C.E., Alcoceba M., Nieto W., Teodosio C. et al. Low-count monoclonal B-cell lymphocytosis persists after seven years of follow up and is associated with a poorer outcome. Haematologica. 2018; 103 (7): 1198–208. https://doi.org/10.3324/haematol.2017.183954
- Rawstron A.C., Bennett F.L., O'Connor S.J., Kwok M., Fenton J.A., Plummer M., de Tute R. et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N. Engl. J. Med. 2008; 359 (6): 575–83. https://doi.org/10.1056/NEJMoa075290
- Rossi D., Spina V., Gaidano G. Biology and treatment of Richter syndrome. Blood. 2018; 131 (25): 2761–72. https://doi.org/10.1182/blood-2018-01-791376
- Del Giudice I., Chiaretti S., Tavolaro S., De Propris M.S., Maggio R., Mancini F., Peragine N. et al. Spontaneous regression of chronic lymphocytic leukemia: clinical and biologic features of 9 cases. Blood. 2009; 114 (3): 638–46. https://doi.org/10.1182/blood-2008-12-196568
- Barrio S., Shanafelt T.D., Ojha J., Chaffee K.G., Secreto C., Kortüm K.M., Pathangey S. et al. Genomic characterization of high-count MBL cases indicates that early detection of driver mutations and subclonal expansion are predictors of adverse clinical outcome. Leukemia. 2017; 31 (1): 170–6. https://doi.org/10.1038/leu.2016.172
- Winkelmann N., Rose-Zerilli M., Forster J., Parry M., Parker A., Gardiner A., Davies Z. et al. Low frequency mutations independently predict poor treatment-free survival in early stage chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis. Haematologica. 2015; 100 (6): 237–239. https://doi.org/10.3324/haematol.2014.120238
- Gruber M., Bozic I., Leshchiner I., Livitz D., Stevenson K., Rassenti L., Rosebrock D., Taylor-Weiner A. et al. Growth dynamics in naturally progressing chronic lymphocytic leukaemia. Nature. 2019; 570 (7762): 474–9. https://doi.org/10.1038/s41586-019-1252-x
- Montserrat E., Sanchez-Bisono J., Viñolas N., Rozman C. Lymphocyte doubling time in chronic lymphocytic leukaemia: analysis of its prognostic significance. Br. J. Haematol. 1986; 62 (3): 567–75. https://doi.org/10.1111/j.1365-2141.1986.tb02969.x
- Al-Sawaf O., Robrecht S., Bahlo J., Fink A.M., Cramer P., V Tresckow J., Lange E. et al. Richter transformation in chronic lymphocytic leukemia (CLL)-a pooled analysis of German CLL Study Group (GCLLSG) front line treatment trials. Leukemia. 2021; 35 (1): 169–76. https://doi.org/10.1038/s41375-020-0797-x
- Fabbri G., Khiabanian H., Holmes A.B., Wang J., Messina M., Mullighan C.G., Pasqualucci L. et al. Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. J. Exp. Med. 2013; 210 (11): 2273–88. https://doi.org/10.1084/jem.20131448
Supplementary files
