Hemoglobins in ischemic brain damage: from fetal hemoglobin to neuroglobin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. This review is devoted to the study of the structure, properties, evolution of hemoglobins, biochemical and clinical aspects of the use of neuroglobin (Ngb) and fetal hemoglobin (HbF) in health and in ischemic hypoxia of the brain.

Material and methods. To search for relevant literature, we used the eLibrary, MedLine and ScienceDirect databases from 2000 to 2023. The data on Ngb and HbF are analyzed, mainly concerning the issues of diagnostics and treatment of hypoxic lesions of the central nervous system.

Results. The review begins with the structural organization of penta- and hexacoordinated hemoglobins. The evolution of hemoglobin genotypes from bacterial hemoproteins, currently represented by the Ngb protein, to the evolutionarily youngest HbF of placental mammals is presented. The diversity of hemoglobins allows us to assume that the transport function of vertebrate hemoglobins appeared relatively recently during adaptation to the increasing concentration of oxygen in the atmosphere, and the most ancient functions of hemoglobins should be enzymatic (utilization of NO and oxygen) and sensory (in relation to oxygen). Ngb is found in brain tissue, retina, some endocrine glands of mammals and humans. Functions of Ngb: participation in NO metabolism, detoxification of active oxygen species (ROS), protection from apoptosis, signal transmission, participation in lipid metabolism. As for HbF, the physicochemical properties of this hemoglobin have been studied for quite a long time, and a broader clinical study of Ngb and HbF in various pathologies is associated with the problem of diagnostic test systems for these hemoproteins.

Conclusion. Ngb is a promising drug for protecting cells from hypoxia and neuronal death, and Ngb-based drugs can find application in a variety of medical fields. As for HbF, the development of ELISA for HbF in blood hemolysates opens up new prospects for diagnosing hypoxic and ischemic central nervous system lesions.

Full Text

Restricted Access

About the authors

Alexander Vladimirovich Kokhanov

Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: kokhanov@mail.ru
ORCID iD: 0000-0002-4167-6299

Professor of the Department of Fundamental Chemistry, Doctor of Medical Sciences, Professor

Russian Federation, Bakinskaya st., 121, Astrakhan, 414000

Rinata Albkalievna Bisalieva

Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Health of the Russian Federation

Email: rinabis@mail.ru
ORCID iD: 0009-0003-9814-5098

Associate Professor of the Department of Biological Chemistry and Clinical Laboratory Diagnostics, Candidate of Medical Sciences, Associate Professor

Russian Federation, Bakinskaya st., 121, Astrakhan, 414000

Laura Khalisovna Ebzeeva

Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Health of the Russian Federation

Email: lauraebzeeva@mail.ru
ORCID iD: 0009-0009-1432-7147

postgraduate student of the Department of Neurology and Neurosurgery

Russian Federation, Bakinskaya st., 121, Astrakhan, 414000

References

  1. Burmester Т., Hankeln T. Function and evolution of vertebrate globins. Acta Physiol. (Oxf). 2014; 211: 501–14.
  2. Gell D.A. Structure and function of haemoglobins. Blood Cells Mol. Dis. 2018; 70: 13–42.
  3. Юшков Б.Г., Черешнев В.А., Бриллиант С.А. Гетерогенная система гемоглобина и ее роль в норме и при патологии. Клиническая патофизиология. 2020; 26 (2): 22–36. [Yushkov B.G., Chereshnev V.A., Brilliant S.A. Heterogeneous hemoglobin system and its role in health and disease. Klinicheskaya patofiziologiya. 2020; 26 (2): 22–36 (in Russian)].
  4. Vinogradov S.N., Moens I. Diversity of globin function: enzymatic, transport, storage and sensing. J. Biol. Chem. 2008; 283: 8773–7.
  5. Zabolotsky S.V., Novikov G.A., Gusakova N.L. Globin proteins in evolution vertebrata. Тенденции развития науки и образования. 2023; 96–7: 116–20.
  6. Keppner A., Maric D., Correia M., Koay T. W., Orlando I. M.C. et al. Lessons from the post-genomic era: Globin diversity beyond oxygen binding and transport. Redox Biol. 2020; 37: 101687. doi: 10.1016/j.redox.2020.101687
  7. Miyata M., Gillemans N., Hockman D., Demmers J.A.A., Cheng J.F. et al. An evolutionarily ancient mechanism for regulation of hemoglobin expression in vertebrate red cells. Blood. 2020; 136: 269–78. doi: 10.1182/blood.2020004826
  8. Pillai A.S., Chandler S.A., Liu Y., Signore A.V., Cortez-Romero C.R. et al. Origin of complexity in haemoglobin evolution. Nature. 2020; 581: 480–5. doi: 10.1038/s41586-020-2292-y
  9. Hardison R. Evolution of hemoglobin and its genes. Cold Spring Harbor Perspect. Med. 2012; 2: a011627: 1–18.
  10. Keppner A., Maric D., Correia M., et al. Lessons from the post-genomic era: globin diversity beyond oxygen binding and transport. Redox Biol. 2020; 37: 101687. doi: 10.1016/j.redox.2020.101687
  11. Roesner A., Fuchs C., Hankeln Т., Burmester T. A globin gene of ancient evolutionary origin in lower vertebrates: evidence for two distinct globin families in animals. Mol. Biol. Evol. 2005; 22: 12–20.
  12. Ascenzi P. et al. Neuroglobin: From structure to function in health and disease. Molecular Aspects of Medicine. 2016; 52: 1–49.
  13. Emara M., Turner A.R., Allalunis-Turner J. A Hypoxia differentially upregulates the expression of embryonic, fetal and adult hemoglobin in human glioblastoma cells. Int. J. Oncol. 2014; 44 (3): 950–8.
  14. Lee M.H., Kim J.H., Im M.W., Choi J.W. Association between enhanced fetal haemoglobin levels and ineffective reticulocyte production in diabetics. Acta Haematol. 2009; 122 (4): 247–51.
  15. Perutz M.F. Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon monoxide. Ann. Rev. Physiol. 1990; 52: 1–25.
  16. Pack-Mabien A.V., Imran H. Benefits of delayed fetal hemoglobin (HbF) switching in sickle cell disease (SCD): a case report and review of the literature. J. Pediatr. Hematol. Oncol. 2013; 35 (8): 347–9.
  17. Gavulic A.E., Dougherty D., Li S.H. et al. Fetal hemoglobin levels in premature newborns. Should we reconsider transfusion of adult donor blood? J. Pediatr Surg. 2021; 56 (11): 1944–8. doi: 10.1016/j.jpedsurg.2021.04.018
  18. Космачевская О.В., Топунов А.Ф. Гемоглобины – разнообразие структур и функций (обзор). Прикладная биохимия и микробиология. 2009; 45 (6): 627–53. [Kosmachevskaya O.V., Topunov A.F. Hemoglobins – diversity of structures and functions (review). Prikladnaya biokhimiya i mikrobiologiya. 2009; 45 (6): 627–53 (in Russian)].
  19. Paul B.T., Manz D.H., Torti F.M., Torti S.V. Mitochondria and Iron: current questions. Expert Rev Hematol. 2017; 10 (1): 65–79. doi: 10.1080/17474086.2016.1268047
  20. Пинаев С.К. Роль гема в экологически обусловленном онкогенезе (обзор литературы). Экология человека. 2023; 30 (1): 5–15. DOI: https://doi.org/10.17816/humeco115234 [Pinaev S.K. The role of heme in environmentally determined oncogenesis (literature review). Ekologiya cheloveka. 2023; 30 (1): 5–15. DOI: https://doi.org/10.17816/humeco115234 (in Russian)].
  21. Hendgen-Cotta U.В., Kelm M., Rassaf T. Myoglobin’s novel role in nitrite-induced hypoxic vasodilation. Trends Cardiovasc. Med. 2014; 24: 69–74.
  22. Crawford J.H., Isbell T.S., Huang Z., Shiva S., Chacko В.К., Schechter A.N., Darley-Usmar V.M., Kerby J.D., Lang J.D.,jr., Kraus D., Ho C., Gladwin M.Т., Patel R.P. Hypoxia, red blood cells and nitrite regulate NO-dependent hypoxic vasodilation. Blood. 2006; 107: 566–71.
  23. Steinhoff H.J., Semmler D., Shiva S., Williams D., Kipar A., Gladwin M.Т., Schroder J., Kelm M., Cossins A.R., Rassaf T. Nitrite regulate hypoxic vasodilation via myoglobin dependent nitric oxide generation. Circulation. 2012; 126: 325–34.
  24. Totzeck M., Hendgen-Cotta U.В., Kelm M., Rassaf T. Crosstalk between nitrite myoglobin and reactive oxygen species to regulate vasodilatation under hypoxia. PLoS ONE. 2012; 9: 1–10.
  25. Burmester T., Gerlach F., Hankeln T. Regulation and role of neuroglobin and cytoglobin under hypoxia. Adv. Exp. Med. Biol. 2007; 618: 169–80.
  26. Brunori M, Vallone B. A Globin for the Brain. FASEB J. 2009; 20 (13): 2192–7. https://doi.org/10.1096/fj.06-6643
  27. Burmester T., Weich B., Reinhardt S., Hankeln T. A vertebrate globin expressed in the brain. Nature. 2000; 407 (6803): 520–3.
  28. Kugelstadt D., Haberkamp M., Hankeln T., Burmester T. Neuroglobin, cytoglobin and a novel, eye-specific globin from chicken. Biochem. Biophys. Res. Commun. 2004; 325: 719–25.
  29. Lechauve C., Augustin S., Cwerman-Thibault H., Bouaita A., Forster V., Célier C., Rustin P., Marden M.C., Sahel J.A., Corral-Debrinski M. Neuroglobin involvement in respiratory chain function and retinal ganglion cell integrity. Biochim. Biophys. Acta. 2012; 1823: 2261–73.
  30. Pesce A., Dewilde S., Nardini M., Moens L., Ascenzi P., Hankeln T., Burmester T., Bolognesi M. Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure. 2003; 11: 1087–95.
  31. Burmester Т., Ebner В., Welch В., Hankeln T. Cytoglobin: novel globin type ubiquitously exhressed in vertebrate tissues. Mol. Biol. Evol. 2002; 19: 416–21.
  32. Hankeln Т., Ebner В., Fuchs C., Gerlach F., Haberkamp M., Laufs T.L, Roesner A., Schmidt M., Welch В., Wystub S., Saaler-Reinhardt S., Reuss S., Bolognesi M., De Sanctis D., Harden M.C., Kiger L., Moens L., Dewilde S., Nevo E., Avivi A., Weber R.E., Fago A., Burmester T. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J. Inorg. Biochem. 2005; 99: 110–9.
  33. Bon L.I., Maksymovich N.Ye., Karnyushko O.A., Zimatkin S.М., Burak I.N., Lazarev V.F. Changes in the content of neuroglobin in the neurons of the cerebral cortex of rats with ischemia. J. Cytol. Histol. Res. 2022; 1 (1): 1–5. doi: 10.47363/JCHR/2022(1)101.
  34. Emara M., Turner A. R., Allalunis-Turner J. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues. Cancer Cell Int. 2010; 33. doi: 10.1186/1475-2867-10-33
  35. Curtis E., His L, Noguchi A., Geary L, Shiva S. Oxygen regulates tissue, nitrite metabolism. Antioxidants Redox Signaling. 2012; 17: 551–961.
  36. Cooper C.E. Nitric oxide biochemistry. Biochim. biophys. acta. 1999; 1411: 217–488.
  37. Gladwin M.T., Grubina R., Doyele M.P. A new chemical biology of nitrite reactions with hemoglobin: R-state catalysis, oxidative denitrosylation, and nitrite reductase/anhydrase. Acc. Chem. Res. 2009; 42 (1): 157–67.
  38. Hendgen-Cotta U. В., Merx M. W., Shiva S., Schmitz J., Becher S., Klare J. P., Steinhoff H. J., Goedecke A., Schrader J., Gladwin M. Т., Kelm M., Rassaf T. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc. Nat. Acad. Sci. USA. 2008; 105: 10256–61.
  39. Shiva S. Mitochondria as metabolizers and targets of nitrite. Nitric Oxide. 2010; 22: 64–74.
  40. Li H., Hemann C., Abdelghany T.M., El-Mahdy M. A., Zweier J.L. Characterization of the mechanism and magnitude of cytoglobin-mediated nitrite reduction and nitric oxide generation under anaerobic conditions. J. Biol. Chem. 2012; 287: 36623–33.
  41. Xie L.K., Yang S.H. Brain globins in physiology and pathology. Med. Gas. Res. 2016; 6 (3): 154–63. doi: 10.4103/2045-9912.191361.
  42. Li R.C., Guo S.Z., Lee S.K., Gozal D. Neuroglobin protects neurons against oxidative stress in global ischemia. J. Cereb. Blood. Flow. Metab. 2010; 30 (11): 1874–82. doi: 10.1038/jcbfm.2010.90
  43. Shiva S., Rassaf Т., Patel R.P., Gladwin M.T. The detection of the nitrite reductase and NO-generating properties of haemoglobin by mitochondrial inhibition. Cardiovasc. Res. 2011; 89: 566–73.
  44. Tiso M., Tejero J., Basu S., Azarov I., Wang X., Simplaceanu V., Frizzell S., Jayaraman T., Geary L., Shapiro C., Ho C., Shiva S., Kim-Shapiro D.B., Gladwin M.T. Human neuroglobin functions as a redox-regulated nitrite reductase. J. Biol. Chem. 2011; 286 (20): 18277–89. doi: 10.1074/jbc.m110. 159541.
  45. Rashad S., Saigusa D., Yamazaki I, Matsumoto Y, Tomioka Y., Saito R., Uruno A., Niizuma K. Yamamoto M, Tominaga T. Metabolic basis of neuronal vulnerability to ischemia; an in vivo untargeted metabolomics approach. Sci Rep. 2020; 10 (1): 6507.
  46. Taylor J.M, Kelley B., Gregory E. J., Berman N. E. Neuroglobin overexpression improves sensorimotor outcomes in a mouse model of traumatic brain injury. Neurosci. Lett. 2014; 577: 125–9.
  47. De Marinis E., et al. 17Beta-Oestradiol anti-inflammatory effects in primary astrocytes require oestrogen receptor beta-mediated neuroglobin up-regulation. J. Neuroendocrinol. 2013; 25: 260–70.
  48. Van Acker Z.P., Luyckx E., Dewilde S. Neuroglobin Expression in the Brain: a Story of Tissue Homeostasis Preservation. Mol Neurobiol. 2018. [Epubaheadofprint]. https://doi.org/10.1007/s12035-018-1212-8
  49. Li Y., Dai Y.B., Sun J.Y., Xiang Y., Yang J., Dai S.Y., Zhang X. Neuroglobin Attenuates Beta Amyloid-Induced Apoptosis Through Inhibiting Caspases Activityby Activating PI3K/Akt Signaling Pathway. J. Mol. Neurosci. 2016; 58 (1): 28–38. https://doi.org/10.1007/s12031-015-0645-z
  50. Wang X., Liu J., Zhu H., Tejima E., Tsuji K., Murata Y., Atochin D.N., Huang P.L., Zhang C., Lo E.H. Effects of neuroglobin overexpression on acute brain injury and long-term outcomes after focal cerebral ischemia. Stroke. 2008; 39 (6): 1869–74. doi: 10.1161/STROKEAHA.107.506022.
  51. Кулева Н.В., Красовская И.Е. Роль гемосодержащих глобинов в NO-сигнализации в клетках позвоночных при гипоксии. Цитология. 2015; 57 (8): 563-71. [Kuleva N.V., Krasovskaya I.E. The role of heme-containing globins in NO signaling in vertebrate cells under hypoxia. Tsitologiya. 2015; 57 (8): 563–71 (in Russian)].
  52. Zhang B., Liu Y., Li Y., Zhe X., Zhang S., Zhang L. Neuroglobin promotes the proliferation and suppresses the apoptosis of glioma cells by activating the PI3K/AKT pathway. Molecular Medicine Reports. 2018; 17: 2757–63.
  53. Xue L., Chen H., Lu K. et al. Clinical significance of changes in serum neuroglobin and HIF-1α concentrations during the early-phase of acute ischemic stroke. J. Neurol. Sci. 2017; 375: 52–7.
  54. Fu H, Hardy J., Duff K.E. Selective vulnerability in neurodegenerative diseases. Nat Neurosci. 2018; 21 (10): 1350–8.
  55. Узлова Е.В., Зиматкин С.М. Нейроглобин: строение, функции, локализация в мозге в норме и при патолотии. Новости медико-биологических наук. 2019; 19 (1): 91–6. [Uzlova E.V., Zimatkin S.M. Neuroglobin: structure, functions, localization in the brain in normal conditions and in pathologies. Novosti mediko-biologicheskikh nauk. 2019; 19 (1): 91–6 (in Russian)].
  56. Узлова Е.В., Зиматкин С.М. Нейропротекторное действие нейроглобина при гипоксии/ишемии. Сибирский научный медицинский журнал. 2021; 41 (2): 33–9. doi: 10.18699/SSMJ20210205 [Uzlova E.V., Zimatkin S.M. Neuroprotective effect of neuroglobin during hypoxia/ischemia. Sibirskiy nauchnyy meditsinskiy zhurnal. 2021; 41 (2): 33–9. doi: 10.18699/SSMJ20210205 (in Russian)].
  57. Derakhshani A., Safarpour H., Abdoli Shadbad M., Hemmat N., Leone P. et al. The role of hemoglobin subunit delta in the immunopathy of multiple sclerosis: mitochondria matters. Front. Immunol. 2021; 12: 709173. doi: 10.3389/fimmu.2021.709173
  58. Parikh J., Kapela A., Tsoukias N.M. Can endothelial hemoglobin-alpha regulate nitric oxide vasodilatory signaling? Am. J. Physiol. Heart Circ. Physiol. 2017; 312: 854–66. doi: 10.1152/ajpheart.00315.2016
  59. Башарин В.А., Халимов Ю.Ш., Толкач П.Г., Кузьмич В.Г. Острое отравление монооксидом углерода. Военно-медицинский журнал. 2018; 339 (4): 12–8. [Basharin V.A., Khalimov Yu.Sh., Tolkach P.G., Kuzmich V.G. Acute carbon monoxide poisoning. Voyenno-meditsinskiy zhurnal. 2018; 339 (4):12–8 (in Russian)].
  60. Fossen Johnson S. Methemoglobinemia: Infants at risk. CurrProblPediatrAdolesc Health Care. 2019; 49 (3): 57–67.
  61. Steinberg M.H., Chui D.H., Dover G.J., Sebastiani P., Alsultan A. Fetal hemoglobin in sickle cell anemia: a glass half full? Blood. 2014; 123 (4): 481–5.
  62. Pritišanac E, Urlesberger B, Schwaberger B, Pichler G. Accuracy of pulse oximetry in the presence of fetal hemoglobin – A systematic review. Children (Basel) 2021; 8 (5): 361. DOI: 10.3390 / children8050361.
  63. Weber R.E., Lalthantluanga R., Braunitzer G. Functional characterization of fetal and adult yak hemoglobins: an oxygen binding cascade and its molecular basis. Arch. Biochem. Biophys. 1988; 263 (1): 199–203.
  64. Thein S.L., Menzel S. Discovering the genetics underlying fetal haemoglobin production in adults. British J. of Haematology. 2009; 145 (4): 455–67.
  65. Бисалиева Р.А., Кривенцев Ю.А., Бисалиев Р.В., Кальной В.С. Иммунохимический анализ фетального гемоглобина в крови наркологических больных. Наркология. 2009; 8 (1): 95–7. [Bisalieva R.A., Kriventsev Yu.A., Bisalуev R.V., Kalnoy V.S. Immunochemical analysis of fetal hemoglobin in the blood of narcological patients. Narcology. 2009; 8 (1): 95–7 (In Russian)].
  66. Кривенцев Ю.А., Кривенцева Л.А. Гемоглобины человека как диагностические маркеры. Научное обозрение. Медицинские науки. 2018; 1: 16–20. [Kriventsev Yu.A., Kriventseva L.A. Human hemoglobins as diagnostic markers. Nauchnoye obozreniye. Meditsinskiye nauki. 2018; 1: 16–20 (In Russian)].
  67. Коханов А.В., Шининова С.В., Воронкова М.Ю., Бисалиева Р.А. Нормативные показатели красной крови у здоровых детей дошкольного возраста юга Астраханской области человека. Современные проблемы науки и образования. 2016; 5. URL: https://science-education.ru/ru/article/view?id = 25205 [Kokhanov A.V., Shininova S.V., Voronkova M.Yu., Bisalieva R.A. Normative indicators of red blood in healthy preschool children in the south of the Astrakhan region. Sovremennyye problemy nauki i obrazovaniya. 2016; 5. URL: https://science-education.ru/ru/article/view?id = 25205 (In Russian)].
  68. Шамратова В. Г., Исаева Е. Е., Усманова С. Р. Фетальный гемоглобин – маркер кислородного дефицита клеток при гиподинамии. Вестник Башкирского университета. 2015; 20 (1): 101–5. [Shamratova V. G., Isaeva E. E., Usmanova S. R. Fetal hemoglobin is a marker of oxygen deficiency in cells with physical inactivity. Vestnik Bashkirskogo universiteta. 2015; 20 (1): 101–5 (In Russian)].
  69. Шининова С.В., Саташева З.М., Сайдулаев В.А., Коханов А.В., Кчибеков Э.А., Гудинская Н.И., Жмыхов Д.В. Сравнение уровней лактоферрина и фетального гемоглобина в крови пожилых жителей юга Астраханской области и горных районов Дагестана. Современные проблемы науки и образования. 2023; 4: 91–8. [Shininova S.V., Satasheva Z.M., Saidulaev V.A., Kokhanov A.V., Kchibekov E.A., Gudinskaya N.I., Zhmykhov D.V. Comparison of the levels of lactoferrin and fetal hemoglobin in the blood of elderly residents of the south of the Astrakhan region and the mountainous regions of Dagestan. Sovremennyye problemy nauki i obrazovaniya. 2023; 4: 91–8 (In Russian)].
  70. Papadopoulos C, Anagnostopoulos K, Tsiptsios D, Karatzetzou S, Liaptsi E, Lazaridou IZ, Kokkotis C, Makri E, Ioannidou M, Aggelousis N, Vadikolias K. Unexplored Roles of Erythrocytes in Atherothrombotic Stroke. Neurol Int. 2023; 15 (1): 124–39. doi: 10.3390/neurolint15010011.
  71. Henry ER, Metaferia B, Li Q, et al. Treatment of sickle cell disease by increasing oxygen affinity of hemoglobin. Blood 2021; 138 (13): 1172–81. DOI: 10.1182 / blood. 2021012070.
  72. Кривенцев Ю.А., Никулина Д.М., Бисалиева Р.А. Иммунохимический анализ концентрации фетального гемоглобина в крови новорожденных мальчиков и девочек с внутриутробной гипоксией. Омский научный вестник. 2006; 46 (9): 272–4. [Kriventsev Yu.A., Nikulina D.M., Bisalieva R.A. Immunochemical analysis of the concentration of fetal hemoglobin in the blood of newborn boys and girls with intrauterine hypoxia. Omskiy nauchnyy vestnik. 2006; 46 (9): 272–4 (In Russian)].
  73. Никулина Д.М., Кривенцев Ю.А., Бисалиева Р.А., Лапеко С.В. Новый иммунохимический тест для лабораторной оценки состояния эритрона. Клиническая лабораторная диагностика. 2009; 12: 27–30. [Nikulina D.M., Kriventsev Yu.A., Bisalieva R.A., Lapeko S.V. A new immunochemical test for laboratory assessment of the state of erythron. Klinicheskaya laboratornaya diagnostika. 2009; 12: 27–30 (In Russian)].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russkiy Vrach Publishing House