Peptide regulation of B-lymphocytic immunity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Relevance. The mechanisms of B-lymphocyte immunity are not fully understood at present, in particular, the role and significance of the humoral response to viruses. There is insufficient understanding of how B-lymphocytes are selected for differentiation into long-lived cells. Therefore, there are serious unmet needs in the development of vaccines against influenza, coronavirus and many other infectious agents. Drugs that affect B-lymphocyte immunity can improve both the understanding of these processes and the results of therapeutic and preventive procedures.

Objective: to summarize information on peptide regulation of B-lymphocyte immunity.

Material and methods: publications were searched in the database on the RSCI website, in the PubMed and Google Scholar databases. The review includes 47 sources.

Results: To date, more than 20 biologically active peptides have been isolated and synthesized from the bursa of Fabricius. All these substances contributed to the differentiation of B cells. It is shown that many biologically active peptides regulating the development of B-lymphocytes are similar in birds and mammals. Some of them inhibit the exudative phase of inflammation by reducing the secretion of proinflammatory cytokines by mononuclear cells. Peptides of the bursa of Fabricius also stimulate the inductive and productive phases of the immune response. Some of them have an antioxidant function and antitumor activity. Peptides obtained from the bursa of Fabricius dramatically enhance the immune response to the vaccine and promote the production of antibodies. The use of peptides of the bursa of Fabricius as adjuvants in vaccination is considered. Obviously, insufficient attention is paid to studies on the effect of biologically active compounds from the bursa of Fabricius on immune homeostasis. In the literature available to us, we did not find a single review devoted to this topic.

Conclusion. Peptides from the Bursa of Fabricius are very promising both in terms of therapy for certain disorders in the immune system and as adjuvants for vaccines against viruses.

全文:

受限制的访问

作者简介

Alexander Stepanov

Federal State Budgetary Educational Institution of Higher Education “Chita State Medical Academy” of the Ministry of Health of the Russian Federation

编辑信件的主要联系方式.
Email: avstep@rambler.ru
ORCID iD: 0000-0002-8593-6662

Doctor of Medical Sciences, Professor of the Department of Anesthesiology, Resuscitation and Intensive Care

俄罗斯联邦, Gorky st., 39а, Chita, Zabaikalsky Krai, 672000

Konstantin Shapovalov

Federal State Budgetary Educational Institution of Higher Education “Chita State Medical Academy” of the Ministry of Health of the Russian Federation

Email: shkg26@mail.ru
ORCID iD: 0000-0002-3485-5176

Doctor of Medical Sciences, Head of the Department of Anesthesiology, Resuscitation and Intensive Care

俄罗斯联邦, Gorky st., 39а, Chita, Zabaikalsky Krai, 672000

Yevgeny Stepanov

Federal State Budgetary Educational Institution of Higher Education “Chita State Medical Academy” of the Ministry of Health of the Russian Federation

Email: eugen3-stepanov@ya.ru
ORCID iD: 0000-0002-3926-3014

Postgraduate Student, Department of Pathological Physiology

俄罗斯联邦, Gorky st., 39а, Chita, Zabaikalsky Krai, 672000

参考

  1. Zsichla L., Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses. 2023; 15 (1): 175. doi: 10.3390/v15010175
  2. Netea M.G., Ziogas A., Benn C.S., Giamarellos-Bourboulis E.J., Joosten LAB., Arditi M., Chumakov K., van Crevel R., Gallo R., Aaby P., van der Meer JWM. The role of trained immunity in COVID-19: Lessons for the next pandemic. Cell Host Microbe. 2023; 31 (6): 890–901. doi: 10.1016/j.chom.2023.05.004
  3. Diamond M.S., Kanneganti T.D. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol. 2022; 23 (2): 165–76. doi: 10.1038/s41590-021-01091-0.
  4. Choudhry Y., Maslove D.M., Rauh M.J. COVID-19 and the Genetics of Inflammation. Crit Care Med. 2023; 51 (6): 817–25. doi: 10.1097/CCM.0000000000005843
  5. Бобкова Н.В., Полтавцева Р.А., Чаплыгина А.В., Садыков В.Ф., Сухих Г.Т. Современные средства борьбы с SARS-CоV-2. Молекулярная медицина, 2023; 1: 16–29. DOI.org/10.29296/24999490-2023-01-03. [Bobkova N.V., Poltavtseva R.A., Chaplygina A.V., Sadykov V.F., Sukhikh G.T. Modern means of combating SARS-CoV-2. Molekulyarnaya meditsina. 2023; 1: 16–29 (in Russian). doi: 10.29296/24999490-2018-02-02]
  6. Zsichla L., Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses. 2023; 15 (1): 175. doi: 10.3390/v15010175
  7. Шаповалов К.Г., Степанов А.В., Бурдинская Ж.С., Шакирьянова М.В., Янченко О.М. Трехмесячные результаты вакцинации медработников моностационара препаратов «Гам-КОВИД-Вак». Иммунология. 2021: 42 (2): 125–30. DOI: 10/33029/0206-4952-2021-42-2-125-130 [Shapovalov K.G., Stepanov A.V., Burdinskaya Zh.S., Shakiryanova M.V., Yanchenko O.M. Three-month vaccination results of medical workers of the monostationary of drugs «Gam-COVID-Vac.» Immunology. 2021: 42 (2): 125–30. DOI: 10/33029/0206-4952-2021-42-2-125-130 (in Russian)]
  8. Борунова А.А., Шоуа Э.К., Захарова Е.Н., Черткова А.И., Кадагидзе А.И., Шоуа И.Б., Давыдова Т.В., Кушлинский Н.Е. Особенности клеточного иммунитета медицинских работников в первую волну пандемии SARS-CоV-2-инфекции. Иммунология. 2023; 44 (6): 776–87. doi: 10.33029/0206-4952-2023-44-6-776-787 [Borunova A.A., Showa E.K., Zakharova E.N., Chertkova A.I., Kadagidze A.I., Showa I.B., Davydova T.V., Kushlinsky N.E. Features of cellular immunity of medical workers in the first wave of the SARS-CoV-2 pandemic. Immunology. 2023; 44 (6): 776–87. doi: 10.33029/0206-4952-2023-44-6-776-787 (in Russian)]
  9. Rottmayer K., Loeffler-Wirth H., Gruenewald T., Doxiadis I., Lehmann C. Individual Immune Response to SARS-CoV-2 Infection-The Role of Seasonal Coronaviruses and Human Leukocyte Antigen. Biology (Basel). 2023; 12 (10): 1293. doi: 10.3390/biology12101293
  10. Tanjilur R., Ayan D., Mehedy H.A., Iqbal Hossain Nafiz, Aar Rafi Mahmud, Md. Rifat Sarker, Talha Bin Emran, Mohammad Mahmudul Hassan. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine. 2023; 169: 156268 doi: 10.1016/j.cyto.2023.156268
  11. Tao N., Xu X., Ying Y., Hu S., Sun Q., Lv G., Gao J. Thymosin α1 and Its Role in Viral Infectious Diseases: The Mechanism and Clinical Application. Molecules. 2023; 28 (8): 3539. doi: 10.3390/molecules28083539
  12. Ebina-Shibuya R., Leonard W.J. Role of thymic stromal lymphopoietin in allergy and beyond. Nat Rev Immunol. 2023; 23 (1): 24–37. doi: 10.1038/s41577-022-00735-y
  13. Хавинсон В.Х., Журкович И.К., Рыжак Г.А., Миронова Е.С., Ковров Н.Г. Идентификация коротких пептидов: оптимизация таргетных терапевтических свойств лекарственного препарата тимуса. Молекулярная медицина, 2021; 3: 32–7. doi: 10.29296/24999490-2021-03-05. [Havinson V.H., Zhurkovich I.K., Ryzhak G.A., Mironova E.S., Kovrov N.G. Identification of short peptides: optimization of targeted therapeutic properties of the thymus drug. Molekulyarnaya meditsina, 2021; 3: 32–7. doi: 10.29296/24999490-2021-03-05 (in Russian)]
  14. Рыжак Г.А., Чалисова Н.И., Иванова П.Н., Егозова Е.С. Влияние полипептидных комплексов на стимуляцию клеточной пролиферации тканей экспериментальных животных. Молекулярная медицина, 2023; 3: 39–42. doi: 10.29296/24999490-2023-03-05. [Ryzhak G.A., Chalisova N.I., Ivanova P.N., Egozova E.S. Effect of polypeptide complexes on stimulation of cellular proliferation of tissues of experimental animals. Molekulyarnaya meditsina, 2023; 3: 39–42. doi: 10.29296/24999490-2023-03-05 (in Russian)]
  15. Чалисова Н.И., Рыжак Г.А., Умнов Р.С., Линькова Н.С. Влияние трипептидов на развитие органотипической культуры тканей различного генезе. Молекулярная медицина. 2022; 3: 30–3. doi: 10.29296/24999490-2022-03-04 [Chalisova N.I., Ryzhak G.A., Umnov R.S., Linkova N.S. Influence of tripeptides on the development of organotypic culture of tissues of various geneses. Molekulyarnaya meditsina. 2022; 3: 30–3. doi: 10.29296/24999490-2022-03-04 (in Russian)]
  16. Чалисова Н.И., Рыжак Г.А., Егозова Е.С. Сочетанное влияние полипептидных комплексов на развитие органотипической культуры тканей крыс. Молекулярная медицина. 2023; 1: 56–64. doi: 10.29296/24999490-2023-01-09 [Chalisova, G.A. Ryzhak, E.S. Yegozova. The combined effect of polypeptide complexes on the development of rat tissue organotypic culture. Molecular Medicine. 2023; 1: 56–64. doi: 10.29296/24999490-2023-01-09 (in Russian)]
  17. Scanes C.G. Avian Physiology: Are Birds Simply Feathered Mammals? Front Physiol. 2020; 11: 542466. doi: 10.3389/fphys.2020.542466
  18. Lassila O., Lambris J.D., Gisler R.H. A role for Lys-His-Gly-NH2 in avian and murine B cell development. Cell Immunol. 1989; 122 (2): 319–28. doi: 10.1016/0008-8749(89)90080-4
  19. Audhya T., Viamontes G., Babu U., Goldstein G. Bursin localization in mammalian bone marrow and epithelial cells of intrahepatic bile ducts. Scand J. Immunol. 1990; 31 (2):199–204. doi: 10.1111/j.1365-3083.1990.tb02760.
  20. Goldstein G. Lymphocyte differentiations induced by thymopoietin, bursopoietin and ubiquitin. Symp Soc Dev Biol. 1978; 35: 197–202. doi: 10.1016/b978-0-12-612981-6.50018-1
  21. Кузник Б.И., Степанов А.В., Цыбиков Н.Н. Влияние полипептидов из вилочковой железы, костного мозга и сумки Фабрициуса на иммуногенез и гемостаз у неонатально тимэктомированных и эмбрионально бурсэктомированных цыплят. Бюллетень экспериментальной биологии и медицины. 1987; 103 (4): 449–51. [Kuznik B.I., Stepanov A.V., Tsybikov N.I. The effect of polypeptides from the thymus, bone marrow and bursa of Fabricius on the immunogenesis and hemostasis in neonatally thymectomized and antenatally bursectomized chickens. Bull Eksp Biol Med. 1987; 103 (4): 449–51 (in Russian)].
  22. Кузник Б.И., Степанов А.В., Цыбиков Н.Н., Морозов В.Г., Хавинсон В.Х. Коррекция иммунитета и гемостаза пептидами из сумки Фабрициуса и костного мозга у эмбрионально бурсэктомированных цыплят. Экспериментальная и клиническая фармакология. 1988; 5: 44-46. [Kuznik B.I., Stepanov A.V., Tsybikov N.N., Morozov V.G., Khavinson V.Kh. Correction of immunity and hemostasis with peptides from the bursa of Fabricius and bone marrow in embryonically bursectomized chicks Farmakol Toksikol. 1988; 51 (1): 53–5 (in Russian)].
  23. Цепелев В.Л., Цепелев С.Л. Иммуностимулирующая активность синтетических бурсопептидов. Бюллетень экспериментальной биологии и медицины. 2003; 136 (7): 80–3. [Tsepelev V.L., Tsepelev S.L. Immunostimulating activity of synthetic bursopeptides. Bulletin of Experimental Biology and Medicine. 2003; 136 (7): 80–3 (in Russian)]
  24. Степанов А.В., Цепелев В.Л., Цепелев С.Л., Аюшиев О.Д. Пептидные регуляторы гуморального иммунитета. Чита: Поиск, 2002; 160. [Stepanov A.V., Tsepelev V.L., Tsepelev S.L., Ayushiev O.D. Peptide regulators of humoral immunity. Chita: Search, 2002; 160 (in Russian)]
  25. Feng X., Liu T., Wang F., Cao R., Zhou B., Zhang Y., Mao X., Chen P., Zhang H. Isolation, antiproliferation on tumor cell and immunomodulatory activity of BSP-I, a novel bursal peptide from chicken humoral immune system. Peptides. 2011; 32 (6): 1103–9. doi: 10.1016/j.peptides.2011.04.020
  26. Liu X.D., Zhou B., Cao R.B., Feng X.L., Li X.F., Chen P.Y. Comparison of immunomodulatory functions of three peptides from the chicken bursa of Fabricius. Regul Pept. 2013; 186: 57–61. doi: 10.1016/j.regpep.2013.07.007
  27. Feng X.L., Liu Q.T., Cao R.B., Zhou B., Zhang Y.P., Liu K., Liu X.D., Wei J.C., Li X.F., Chen P.Y. Characterization and immunomodulatory function comparison of various bursal-derived peptides isolated from the humoral central immune organ. Peptides. 2012; 33 (2): 258–64. doi: 10.1016/j.peptides.2012.01.012
  28. Liu X.D., Feng X.L., Zhou B., Cao R.B., Li X.F., Ma Z.Y., Chen P.Y. Isolation, modulatory functions on murine B cell development and antigen-specific immune responses of BP11, a novel peptide from the chicken bursa of Fabricius. Peptides. 2012; 35 (1): 107–13. doi: 10.1016/j.peptides.2012.03.003
  29. Liu X.D., Qian Y., Jung Y.S., Chen P.Y. Isolation and immunomodulatory activity of bursal peptide, a novel bursal peptide from the chicken bursa of Fabricius. J Vet Sci. 2015; 16 (4): 501–7. doi: 10.4142/jvs.2015.16.4.501
  30. Zhang Z., Cai J., Hao S., Li C., Chen J., Li T., Feng X. Transcriptomic analysis of spleen B cell revealed the molecular basis of bursopentin on B cell differentiation. Vet Res. 2022; 53 (1): 109. doi: 10.1186/s13567-022-01123-z.
  31. Цепелев В.Л., Степанов А.В. Влияние регуляторных пептидов на продукцию провоспалительных цитокинов. Забайкальский медицинский вестник. 2015; 2: 147–50. [Tsepelev V.L., Stepanov A.V. Effect of regulatory peptides on the production of pro-inflammatory cytokines. Trans-Baikal Medical Bulletin. 2015; 2: 147–50 (in Russian)]
  32. Степанов А.В., Цепелев В.Л., Мельникова С.Л. Иммуностимулятор из центрального органа гуморального иммунитета – сумки Фабрициуса. Сибирский медицинский журнал. 2013; 2: 32–4. [Stepanov A.V., Tsepelev V.L., Melnikova S.L. Immunostimulator from the central body of gumoralnogo immunity – Fabricius bags. Siberian Medical Journal. 2013; 2: 32–4 (in Russian)]
  33. Zhou G.F., Liu Q.T., Zhou B., Qiu Y.F., Liu X.D., Ma Z.Y., Feng X.L., Cao R.B., Chen P.Y. The potential molecular effects of bursal septpeptide II on immune induction and antitumor activity. J. Vet Sci. 2015; 16 (3): 325–31. doi: 10.4142/jvs.2015.16.3.325
  34. Gitlin A., Nussenzweig M. Immunology: Fifty years of B lymphocytes. Nature. 2015; 517: 139–41. doi: 10.1038/517139a
  35. Nandiwada S.L. Overview of human B-cell development and antibody deficiencies. J Immunol Methods. 2023; 519: 113485. doi: 10.1016/j.jim.2023.113485
  36. Mansourabadi A.H., Aghamajidi A., Dorfaki, M. B lymphocytes in COVID-19: a tale of harmony and discordance. Arch Virol. 2023; 168: 148. doi: 10.1007/s00705-023-05773-y
  37. Kushwaha N.D., Mohan J., Kushwaha B., Ghazi T., Nwabuife J.C., Koorbanally N., Chuturgoon A.A. A comprehensive review on the global efforts on vaccines and repurposed drugs for combating COVID-19. Eur. J. Med. Chem. 2023; 260: 115719. doi: 10.1016/j.ejmech.2023.115719
  38. Zhang S., Yang H., Wang M., Mantovani D., Yang K., Witte F., Tan L., Yue B., Qu X. Immunomodulatory biomaterials against bacterial infections: Progress, challenges, and future perspectives. Innovation (Camb). 2023; 4 (6): 100503. doi: 10.1016/j.xinn.2023.100503
  39. Xu H., Zhu S., Govinden R., Chenia H.Y. Multiple Vaccines and Strategies for Pandemic Preparedness of Avian Influenza Virus. Viruses. 2023; 15 (8): 1694. doi: 10.3390/v15081694
  40. Kanauchi O., Low Z.X., Jounai K., Tsuji R., AbuBakar S. Overview of anti-viral effects of probiotics via immune cells in pre-, mid- and post-SARS-CoV2 era. Front Immunol. 2023; 14: 1280680. doi: 10.3389/fimmu.2023.1280680
  41. Priyanka A., Chopra H., Sharma A., Mustafa S.A., Choudhary O.P., Sharma M., Dhawan M., Khosla R., Loshali A., Sundriyal A., Saini J. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomed Pharmacother. 2023; 167: 115597. doi: 10.1016/j.biopha.2023.115597
  42. Liu Y., Shen T., Zhou J., Chen L., Shi S., Wang X., Zhang M., Wang C., Liao C. Bursal peptide BP-IV as a novel immunoadjuvant enhances the protective efficacy of an epitope peptide vaccine containing T and B cell epitopes of the H9N2 avian influenza virus. Microb Pathog. 2021; 158: 105095. doi: 10.1016/j.micpath.2021.105095
  43. Cai J., Zhang Z., Li C., Hao S., Lu A., Huang X., Feng X. Bursal-Derived BP7 Induces the miRNA Molecular Basis of Chicken Macrophages and Promotes the Differentiation of B Cells. Vaccines (Basel). 2022; 10 (11): 1960. doi: 10.3390/vaccines10111960
  44. Liu Y., Shen T., Zhou J., Chen L., Shi S., Wang X., Zhang M., Wang C., Liao C. Bursal peptide BP-IV as a novel immunoadjuvant enhances the protective efficacy of an epitope peptide vaccine containing T and B cell epitopes of the H9N2 avian influenza virus. Microb Pathog. 2021; 158: 105095. doi: 10.1016/j.micpath.2021.105095.
  45. Hao S.S., Zong M.M., Zhang Z., Cai J.X., Zheng Y., Feng X.L., Wang C. The Inducing Roles of the New Isolated Bursal Hexapeptide and Pentapeptide on the Immune Response of AIV Vaccine in Mice. Protein Pept Lett. 2019; 26 (7): 542–9. doi: 10.2174/0929866526666190405123932
  46. Feng X.L., Zong M.M., Zhou G.F., Zheng Y., Yu Y.N., Cao R.B., Chen P.Y., Yang M. The Functions and Mechanism of a New Oligopeptide BP9 from Avian Bursa on Antibody Responses, Immature B Cell, and Autophagy. J Immunol Res. 2019; 2019: 1574383. doi: 10.1155/2019/1574383.
  47. Dong X., Bie J., Liu X. Research Note: Isolation and immunomodulatory activity of bursal peptide, a novel peptide from avian immune system developments. Poult Sci. 2023; 103 (2): 103294. doi: 10.1016/j.psj.2023.103294

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2025