On the issue of the bilinear model, deformation mechanisms and parameters of the elastin-collagen transition in biological tissues
- Authors: Muslov S.A.1, Gvetadze R.S.1, Arutyunov S.D.1, Korneev A.A.1, Chistyakov M.V.1, Zaitseva N.V.1, Sukhochev P.Y.2
-
Affiliations:
- FSBEI HE “Russian University of Medicine”, Ministry of Health of the Russian Federation
- Lomonosov Moscow State University
- Issue: Vol 23, No 2 (2025)
- Pages: 60-70
- Section: Original research
- URL: https://journals.eco-vector.com/1728-2918/article/view/678679
- DOI: https://doi.org/10.29296/24999490-2025-02-08
- ID: 678679
Cite item
Abstract
Introduction. In general, the physiological response of tissues to external stresses is not linear in accordance with Hooke's law. Biological tissues are known to exhibit a nonlinear relationship between stress and strain, although the origins of this nonlinearity remain incompletely understood. In the literature, authors over the years have proposed many forms of σ-ε correspondence, but this question is still open.
The aim of the study. The article formalizes the characteristics of the elastic properties of soft biological tissues. Elastic behavior is considered within the framework of a two-phase elastin-collagen bilinear model with a variable elastic modulus and its detailed statistical analysis is performed.
Methods. Calculations were performed using the computer algebra system Mathcad 15.0 using the built-in fitting functions linfit, genfit, pwrfit and corr. The residual parameters of the experimental and model data were assessed using descriptive statistics.
Results. The correlation range of empirical and model data was R=0.8696–0.9845, the median of the correlation coefficient was 0.9616, the coefficient of variation was CV=0.03, which indicates a strong connection between the studied random variables and the homogeneity of the calculation procedures. The critical value of deformation ε=εcr, at which the mechanism of tissue deformation changes from elastin to collagen in the tissues of living organisms (median 0.38) is quite variable (CV 1.06). The median of the bilinear model parameters E1 and E2 were set to 0.02 MPa and 8.0 MPa, the CV was 0.35 and 0.79, respectively. Data outlier points have been identified. Based on the calculations performed, it was concluded that the Young’s modulus of collagen fibers in the tissues of the studied organs is a significant number of times (greater than the elastic modulus of elastin structures; average value 3071.36, median 160.00, CV 0.29), which is consistent with the literature data. The stress-strain relationships of phenomenological models alternative to the bilinear one are obtained. As a numerical example, the tissues of the periodontal ligament of the human central incisor are considered.
Conclusion. To describe the mechanism of evolution of the deformation properties of biological tissues, the terminology of the physics of phase transitions, accompanied by a change in symmetry, is used. It is proposed to consider as an order parameter the measure of «involvement» of collagen structures in the overall resistance of tissues to deformation, which is determined by the degree of «linearization» of the branched collagen network in the direction of the action of uniaxial load.
Keywords
Full Text

About the authors
Sergey Aleksandrovich Muslov
FSBEI HE “Russian University of Medicine”, Ministry of Health of the Russian Federation
Author for correspondence.
Email: muslov@mail.ru
ORCID iD: 0000-0002-9752-6804
Professor of Department of normal physiology and medical physics, Doctor of biological sciences, candidate of physics and mathematical sciences
Russian Federation, Dolgorukovskaya str., 4, Moscow, 127006Ramaz Shalvovich Gvetadze
FSBEI HE “Russian University of Medicine”, Ministry of Health of the Russian Federation
Email: ramaz-gvetadze@yandex.ru
ORCID iD: 0000-0003-0508-7072
Professor of the Department of Digital Dentistry, Dr. Med. Sciences, Corresponding Member RAS
Russian Federation, Dolgorukovskaya str., 4, Moscow, 127006Sergey Darchoevich Arutyunov
FSBEI HE “Russian University of Medicine”, Ministry of Health of the Russian Federation
Email: sd_arutyunov@mail.ru
ORCID iD: 0000-0001-6512-8724
Head of Department of Digital Dentistry, Dr. Med. Sciences, Professor, Honored. Doctor of the Russian Federation, Honored. Worker of Science of the Russian Federation
Russian Federation, Dolgorukovskaya str., 4, Moscow, 127006Alexander Alexandrovich Korneev
FSBEI HE “Russian University of Medicine”, Ministry of Health of the Russian Federation
Email: cniti_aak@mail.ru
ORCID iD: 0000-0002-8405-6911
Associated professor of Department of normal physiology and medical physics, Candidate of physics and mathematical sciences
Russian Federation, Dolgorukovskaya str., 4, Moscow, 127006Mikhail Vladimirovich Chistyakov
FSBEI HE “Russian University of Medicine”, Ministry of Health of the Russian Federation
Email: chimisha@yandex.ru
ORCID iD: 0000-0002-4921-3897
Associated professor of Department of normal physiology and medical physics, сandidate of physics and mathematical sciences
Russian Federation, Dolgorukovskaya str., 4, Moscow, 127006Nataliia Viktorovna Zaitseva
FSBEI HE “Russian University of Medicine”, Ministry of Health of the Russian Federation
Email: nataliy-zajceva@yandex.ru
ORCID iD: 0000-0002-3359-412X
Associated professor of Department of normal physiology and medical physics, Candidate of pedagogical sciences
Russian Federation, Dolgorukovskaya str., 4, Moscow, 127006Pavel Yurievich Sukhochev
Lomonosov Moscow State University
Email: ps@moids.ru
ORCID iD: 0000-0002-8004-6011
Laboratory of Mathematical Support for Simulation Dynamic Systems of the Department of Applied Research of the Faculty of Mechanics and Mathematics, Researcher
Russian Federation, Leninskie Gory, 1, Moscow, 119991References
- Wertheim M.G. Memoire sur l'elasticite et la cohesion des pricipaux tissus du corps humain. Ann. Chimie Phys. Paris (Ser. 3). 1847; 21: 385–414.
- Morgan F.R. The mechanical properties of collagen fibers: stress-strain curves. J. Soc. Leather Trades Chem. 1960; 44: 171–82.
- Kenedi R.M., Gibson T., Daly C.H. Bioengineering study of the human skin. In Structure and Function of Connective and Sceletal Tissue, S. F. Jackson, S. M. Harkness, and g. R. Tristram (eds.) Scientific Comittee, St. Andrews, Scotland. 1964; 388–95. https://doi.org/10.1016/b978-1-4831-6701-5.50022-x.
- Ridge M.D., Wright V. Mechanical properties of skin: A bioegineering study of skin texture. J. Appl. Physiol. 1966; 21: 1602–6. https://doi.org/10.1152/jappl.1966.21.5.1602.
- Daniella Corporan et al. Passive mechanical properties of the left ventricular myocardium and extracellular matrix in hearts with chronic volume overload from mitral regurgitation. Physiological Reports. 2022; 10: e15305. https://doi.org/10.14814/phy2.15305.
- Linda L. Demer, Frank C.P. Yin. Passive biaxial mechanical properties of isolated canine myocardium. J. Physiol. 1983; 339: 615–30. https://doi.org/10.1113/jphysiol.1983.sp014738.
- Markenscoff X and Yannas I. On the stress-strain relation for skin. Journal of Biomechanics. 1979; 12: 127–9. https://doi.org/10.1016/0021-9290(79)90151-9.
- Comninou M., Yannas I.V. Dependence of stress-strain nonlinearity of connective tissues on the geometry of collagen fibres. J. of Biomechanics. 1976; 9 (7): 427–33. doi: 10.1016/0021-9290(76)90084-1.
- Haut R.C., Little R.W. A constitutive equation for collagen fibers. J. of Biomechanics. 1972; 5 (5): 423–30. doi: 10.1016/0021-9290(72)90001-2.
- Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Часть 1. 5-е изд. М.: Физматлит, 2002; 616. (Теоретическая физика в 10 томах. Том 5). [Landau L.D., Lifshits E.M. Statistical physics. Part 1. 5th ed. M.: Fizmatlit, 2002; 616. (Theoretical physics in 10 volumes. Volume 5) (in Russian)]
- Островский Н.В., Челнокова Н.О., Голядкина А.А. и др. Биомеханические параметры желудочков сердца человека. Фундаментальные исследования. 2015; 1–10: 2070–5. URL: https://fundamental-research.ru/ru/article/view?id=38599. Дата обращения: 17.10.2023. [Ostrovsky N.V., Chelnokova N.O., Golyadkina A.A. and others. Biomechanical parameters of the ventricles of the human heart. Fundamental'nyye issledovaniya. 2015; 1–10: 2070–5. URL: https://fundamental-research.ru/ru/article/view?id=38599. Access date: 10/17/2023 (in Russian]
- Муслов С.А., Лотков А.И., Арутюнов С.Д., Албакова Т.М. Расчет параметров механических свойств сердечной мышцы. Перспективные материалы. 2020; 12: 42–52. https://doi.org/10.30791/1028-978x-2020-12-42-52. [Muslov S.A., Lotkov A.I., Arutyunov S.D., Albakova T.M. Calculation of parameters of mechanical properties of the heart muscle. Perspektivnyye materialy. 2020; 12: 42–52. https://doi.org/10.30791/1028-978x-2020-12-42-52. (in Russian)]
- Borak L., Florian Z., Bartakova S. et al. Bilinear elastic property of the periodontal ligament for simulation using a finite element mandible model. Dent. Mater. J. 2011; 3 (4): 448–54. doi: 10.4012/dmj. 2010-170.
- Muslov S.A., Panin S.V., Zolotnitsky I.V., Pivovarov A.A., Anischenko A.P., Arutyunov S.D. Mapping of elastic and hyperelastic properties of the periodontal ligament. Mechanics of Composite Materials. 2023; 59 (3): 469–78. https://doi.org/10.1007/s11029-023-10109-7.
- Чижмаков Е.А., Караков К.Г., Муслов С.А., Эм А.В., Арутюнов С.Д. Региональная биомеханическая изменчивость и гиперупругость тканей десен. Современные вопросы биомедицины. 2023; 7 (3). doi: 10.51871/2588-0500_2023_07_03_44. [Chizhmakov E.A., Karakov K.G., Muslov S.A., Um A.V., Arutyunov S.D. Regional biomechanical variability and hyperelasticity of gum tissue. Sovremennyye voprosy biomeditsiny. 2023; 7 (3). doi: 10.51871/2588-0500_2023_07_03_44 (in Russian)].
- Kanbara R., Nakamura Y., Ochiai K.T., Kawai T., Tanaka Y. Three-dimensional finite element stress analysis: the technique and methodology of nonlinear property simulation and soft tissue loading behavior for different partial denture designs. Dent. Mater. 2012; 31: 297–308. 10.4012/dmj.2011-165' target='_blank'>https://doi: 10.4012/dmj.2011-165.
- Chen J., Ahmad R., Li W., Swain M., Li Q. Biomechanics of oral mucosa. J. R. Soc. Interface. 2015; 12 (109): 20150325. DOI: /10.1098/rsif. 2015.0325.
- Муслов С.А., Арутюнов С.Д., Чижмаков Е.А., Эм А.В., Караков К.Г. Биоинженерные аспекты слизистой оболочки рта: обзор и собственные исследования. Современные вопросы биомедицины. 2023; 7 (4): 21. doi: 10.51871/2588-0500_2023_07_04_37. [Muslov S.A., Arutyunov S.D., Chizhmakov E.A., Um A.V., Karakov K.G. Bioengineering aspects of the oral mucosa: review and own research. Sovremennyye voprosy biomeditsiny. 2023, 7 (4): 21. doi: 10.51871/2588-0500_2023_07_04_37 (in Russian)].
- Муслов С.А., Арутюнов С.Д., Чижмаков Е.А., Эм А.В., Караков К.Г. К вопросу о биомеханике слизистой оболочки рта и твердых тканей зуба: обзор и собственные исследования. Современные вопросы биомедицины. 2023; 7 (4): 22. doi: 10.51871/2588-0500_2023_07_04_38. [Muslov S.A., Arutyunov S.D., Chizhmakov E.A., Um A.V., Karakov K.G. On the issue of biomechanics of the oral mucosa and hard dental tissues: review and own research. Sovremennyye voprosy biomeditsiny. 2023; 7 (4): 22. doi: 10.51871/2588-0500_2023_07_04_38 (in Russian)].
- Муслов С.А., Перцов С.С., Чижмаков Е.А., Асташина Н.Б., Никитин В.Н., Арутюнов С.Д. Упругая линейная, билинейная, нелинейная экспоненциальная и гиперупругие модели кожи. Российский журнал биомеханики. 2023; 27 (3): 89–103. doi: 10.15593/RZhBiomeh/2023.3.07. [Muslov S.A., Pertsov S.S., Chizhmakov E.A., Astashina N.B., Nikitin V.N., Arutyunov S.D. Elastic linear, bilinear, nonlinear exponential and hyperelastic skin models. Rossiyskiy zhurnal biomekhaniki. 2023; 27 (3): 89–103. doi: 10.15593/RZhBiomeh/2023.3.07 (in Russian)]
- Муслов С.А., Перцов С.С., Арутюнов С.Д. Физико-механические свойства биологических тканей. Под ред. академика РАН О.О. Янушевича. М.: МГМСУ им. А.И. Евдокимова, 2023; 456. [Muslov S.A., Pertsov S.S., Arutyunov S.D. Physico-mechanical properties of biological tissues. Ed. Academician of the Russian Academy of Sciences O.O. Yanushevich. M.: MGMSU im. A.I. Evdokimova, 2023; 456 (in Russian)].
- Муслов С., Арутюнов С., Перцов С., Караков К. Анализ механических свойств волос человека с помощью гиперупругих моделей Муни-Ривлина. Современные вопросы биомедицины. 2023; 7 (2). doi: 10.51871/2588-0500_2023_07_02. [Muslov S., Arutyunov S., Pertsov S., Karakov K. Analysis of the mechanical properties of human hair using Mooney-Rivlin hyperelastic models. Sovremennyye voprosy biomeditsiny. 2023; 7 (2). doi: 10.51871/2588-0500_2023_07_02 (in Russian)].
- Maev I.V., Muslov S.A., Abdulkerimov Z.A., Solodov A.A., Arutyunov S.D. Mechanical mapping of the multilayer structure of the stomach wall using a differential elastic module and hyperelastic models. Russian J. of Evidence-Based Gastroenterology. 2023; 12 (2): 5–14. (In Russ.) https://doi.org/10.17116/dokgastro2023120215.
- Муслов С.А., Зайцева Н.В., Корнеев А.А., Синицын А.А. Измерение и расчет характеристик упругости стенки общего желчного протока человека. Актуальные вопросы биологической физики и химии. 2022; 7 (1): 92–8. https://doi.org/10.29039/rusjbpc.2022.0489. [Muslov S.A., Zaitseva N.V., Korneev A.A., Sinitsyn A.A. Measurement and calculation of the elasticity characteristics of the wall of the human common bile duct. Aktual'nyye voprosy biologicheskoy fiziki i khimii. 2022; 7 (1): 92–8. https://doi.org/10.29039/rusjbpc.2022.0489. (in Russian)].
- Муслов С.А., Лапшихина Е.А., Кобзев Д.С. Упругость и гиперупругость урогенитальных тканей человека и животных. Эффективная фармакотерапия. Урология и нефрология. 2021; 17 (25): 6–24. [Muslov S.A., Lapshikhina E.A., Kobzev D.S. Elasticity and hyperelasticity of urogenital tissues of humans and animals. Effektivnaya farmakoterapiya. Urologiya i nefrologiya. 2021; 17 (25): 6–24 (in Russian)].
Supplementary files
