Interaction in the PAMPs – mucosal barrier – cytokines system in children with obesity
- 作者: Kirilina I.V.1,2, Rumyantsev S.A.1,3,2, Gaponov A.M.3,4, Khusnutdinova D.R.5, Grigorieva T.V.5, Teplyakova E.D.6, Shestopalov A.V.1,3,2
-
隶属关系:
- N.I. Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation
- FSBI “National Medical Research Center of Endocrinology” of the Ministry of Health of the Russian Federation
- “Molecular Health Center” LLC
- Research Institute of General Resuscitation named after V.A. Negovskiy
- Kazan (Volga Region) Federal University
- FSBEI HE Rostov State Medical University of the Ministry of Health of the Russian Federation
- 期: 卷 23, 编号 4 (2025)
- 页面: 3-9
- 栏目: Original research
- URL: https://journals.eco-vector.com/1728-2918/article/view/688991
- DOI: https://doi.org/10.29296/24999490-2025-04-01
- ID: 688991
如何引用文章
详细
Introduction. The significant increase in obesity among children and adolescents necessitates the search for ways to prevent and treat it. Inflammation in obesity is the main mechanism leading to comorbid changes.
Aim of the study. To establish correlations between PAMPs and cytokines in obese children.
Methods. The study included 198 children and adolescents aged 10 to 18 years with various degrees of alimentary-constitutional obesity and children without obesity. The concentrations of cytokines, trephoyl factors and PAMPs were determined by enzyme immunoassay method.
Results. A statistically significant increase in the concentration of IL-17A (p=0.022) was revealed in obese children. When divided by gender, TNFαwas significantly increased in obese boys (p=0.049) and fractalkine in girls (p=0.040).
Conclusion. The interaction in the PAMPs-mucosal barrier-cytokine system in a group of obese children showed the strongest activation of the immune system in obese boys and the escape of inflammation beyond the intestinal barrier, which is enhanced in obesity due to the association, which has pro-inflammatory activity of flagellin with TFF3.
全文:

作者简介
Irina Kirilina
N.I. Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation; FSBI “National Medical Research Center of Endocrinology” of the Ministry of Health of the Russian Federation
Email: kirilina-irina@bk.ru
ORCID iD: 0000-0002-3064-6553
Head of the Education Laboratory, Department of oncology, hematology and radiotherapy, junior Researcher
俄罗斯联邦, 117513, Moscow, Ostrovityanova St., 1; 117292, Moscow, Dmitry Ulyanov St., 11Sergey Rumyantsev
N.I. Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation; “Molecular Health Center” LLC; FSBI “National Medical Research Center of Endocrinology” of the Ministry of Health of the Russian Federation
编辑信件的主要联系方式.
Email: s_roumiantsev@mail.ru
ORCID iD: 0000-0002-7418-0222
Head of the Department of oncology, hematology and radiotherapy, Director, Deputy Director, Doctor of medical sciences, Professor, Corresponding Member of the Russian Academy of Sciences
俄罗斯联邦, 117513, Moscow, Ostrovityanova St., 1; 117218, Moscow, Nakhimovsky Prospekt, 32, room 1, office 25; 117292, Moscow, Dmitry Ulyanov St., 11Andrey Gaponov
“Molecular Health Center” LLC; Research Institute of General Resuscitation named after V.A. Negovskiy
Email: zorba@yandex.ru
ORCID iD: 0000-0002-3429-1294
Head, Department of Infectious Immunology, Leading Researcher, Federal Scientific and Clinical Center of Resuscitation and Rehabilitation, Candidate of medical sciences
俄罗斯联邦, 117218, Moscow, Nakhimovsky Prospekt, 32, room 1, office 25; 107031, Moscow, Petrovka St., 25/2Dilyara Khusnutdinova
Kazan (Volga Region) Federal University
Email: dilyahusn@gmail.com
ORCID iD: 0000-0002-9982-9059
Junior Researcher, Research Laboratory «Omics technology», Institute of Fundamental Medicine and Biology
俄罗斯联邦, 420021, Kazan, Parizhskoy Kommuny St., 9Tatyana Grigorieva
Kazan (Volga Region) Federal University
Email: tatabio@inbox.ru
ORCID iD: 0000-0001-5314-7012
Senior Researcher, Research Laboratory «Omics technology», Institute of Fundamental Medicine and Biology
俄罗斯联邦, 420021, Kazan, Parizhskoy Kommuny St., 9Elena Teplyakova
FSBEI HE Rostov State Medical University of the Ministry of Health of the Russian Federation
Email: elenatepl7@yandex.ru
ORCID iD: 0000-0002-3585-7026
Professor, Department of Children’s Diseases No.3, Doctor of medical sciences
俄罗斯联邦, 344022, Rostov-on-Don, Nakhichevansky Lane, 29Aleksandr Shestopalov
N.I. Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation; “Molecular Health Center” LLC; FSBI “National Medical Research Center of Endocrinology” of the Ministry of Health of the Russian Federation
Email: al-shest@yandex.ru
ORCID iD: 0000-0002-1428-7706
Head of the Department of biochemistry and molecular biology, Deputy Director, Head of the Laboratory of Biochemistry of Signaling Pathways, Doctor of medical sciences, Professor
俄罗斯联邦, 117513, Moscow, Ostrovityanova St., 1; 117218, Moscow, Nakhimovsky Prospekt, 32, room 1, office 25; 117292, Moscow, Dmitry Ulyanov St., 11参考
- Global nutrition targets 2025: childhood overweight policy brief. https://www.who.int/publications-detail-redirect/WHO-NMH-NHD-14.6. Accessed 26 May 2024/
- Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Human gut microbes associated with obesity. Nature. 2006; 444: 1022–23. https://doi.org/10.1038/4441022a.
- Santacruz A., Collado M.C., GarcIa-Valdés L., Segura M.T., MartIn-Lagos J.A., Anjos T., MartI-Romero M., Lopez R.M., Florido J., Campoy C., Sanz Y. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 2010; 104: 83–92. https://doi.org/10.1017/S0007114510000176.
- Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444: 1027–31. https://doi.org/10.1038/nature05414.
- Sanchez-Alcoholado L., Castellano-Castillo D., Jordán-MartInez L., Moreno-Indias I., Cardila-Cruz P., Elena D., Muñoz-Garcia A.J., Queipo-Ortuño M.I., Jimenez-Navarro M. Role of Gut Microbiota on Cardio-Metabolic Parameters and Immunity in Coronary Artery Disease Patients with and without Type-2 Diabetes Mellitus. Front Microbiol. 2017; 8: 1936. https://doi.org/10.3389/fmicb.2017.01936.
- Корниенко Е.А. Современные представления о взаимосвязи ожирения и кишечной микробиоты. Педиатр. 2013; 4 (3): 3–14. https://doi.org/10.24412/FHG3C-ZTKP8. [Kornienko E.A. Sovremennye predstavleniya o vzaimosvyazi ozhireniya i kishechnoj mikrobioty. Pediatr. 2013; 4 (3): 3–14. https://doi.org/10.24412/FHG3C-ZTKP8 (in Russian)].
- Blacher E., Levy M., Tatirovsky E., Elinav E. Microbiome-Modulated Metabolites at the Interface of Host Immunity. J. Immunol. 2017; 198: 572–80. https://doi.org/10.4049/jimmunol.1601247.
- Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F., Edberg S., Medzhitov R. Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis. Cell. 2004; 118: 229–41. https://doi.org/10.1016/j.cell.2004.07.002.
- Шестопалов А.В., Дворников А.С., Борисенко О.В., Тутельян А.В. Трефоиловые факторы-новые маркеры мукозального барьера желудочно-кишечного тракта. Российский Журнал Инфекция и Иммунитет. 2019; 9: 39–46. https://doi.org/10.15789/2220-7619-2019-1-39-46. [Shestopalov A.V., Dvornikov A.S., Borisenko O.V., Tutelyan A.V. Trefoil factors – new markers of gastrointestinal mucosal barrier. Russian Journal of Infection and Immunity. 2019; 9 (1): 39–46. https://doi.org/10.15789/2220-7619-2019-1-39-46 (in Russian)].
- Шестопалов А.В., Колесникова И.М., Савчук Д.В., Теплякова Е.Д., Шин В.А., Григорьева Т.В., Набока Ю.Л., Гапонов А.М., Румянцев С.А. Влияние вида вскармливания на таксономический состав кишечного микробиома и уровни трефоиловых факторов у детей и подростков. Российский Физиологический Журнал им. И.М. Сеченова. 2023; 109: 656–72. https://doi.org/10.31857/S0869813923050096. [Shestopalov A.V., Kolesnikova I.M., Savchuk D.V., Teplyakova E.D., Shin V.A., Grigoryeva T.V., Naboka Y.L., Gaponov A.M., Roumiantsev S.A. Influence of the Infant Feeding on the Taxonomy of the Gut Microbiome and the Trefoil Factors Level in Children and Adolescents. Rossijskij fiziologiceskij zhurnal im. I.M. Sechenova. 2023; 109 (5): 656–72. https://doi.org/10.31857/S0869813923050096 (in Russian)].
- Kolesnikova I.M., Ganenko L.A., Vasilyev I.Yu., Grigoryeva T.V., Volkova N.I., Roumiantsev S.A., Shestopalov A.V. Metabolic Profile of Gut Microbiota and Levels of Trefoil Factors in Adults with Different Metabolic Phenotypes of Obesity. Mol Biol. 2024; 58: 728–44. https://doi.org/10.1134/S0026893324700316.
- Скворцова О.В., Мигачева Н.Б., Михайлова Е.Г. Иммунометаболические аспекты хронического неспецифического воспаления на фоне ожирения. Медицинский Совет. 2023; 75–82. https://doi.org/10.21518/ms2023-187. [Skvortsova O.V., Migacheva N.B., Mikhailova E.G. Immunometabolic aspects of chronic nonspecific inflammation in obesity. Meditsinskiy Sovet. 2023; 75–82. https://doi.org/10.21518/ms2023-187 (in Russian)].
- Schwartz C., Schmidt V., Deinzer A., Hawerkamp H.C., Hams E., Bayerlein J., Röger O., Bailer M., Krautz C., El Gendy A., Elshafei M., Heneghan H.M., Hogan A.E., O’Shea D., Fallon P.G. Innate PD-L1 limits T cell–mediated adipose tissue inflammation and ameliorates diet-induced obesity. Sci Transl Med. 2022; 14: 6879. https://doi.org/10.1126/scitranslmed.abj6879.
- Teijeiro A., Garrido A., Ferre A., Perna C., Djouder N. Inhibition of the IL-17A axis in adipocytes suppresses diet-induced obesity and metabolic disorders in mice. Nat Metab. 2021; 3: 496–12. https://doi.org/10.1038/s42255-021-00371-1.
- Douzandeh-Mobarrez B., Kariminik A. Gut Microbiota and IL-17A: Physiological and Pathological Responses. Probiotics Antimicrob Proteins. 2019; 11: 1–10. https://doi.org/10.1007/s12602-017-9329-z.
- Кирилина И.В., Шестопалов А.В., Гапонов А.М., Камальдинова Д.Р., Хуснутдинова Д.Р., Григорьева Т.В., Теплякова Е.Д., Юдин С.М., Макаров В.В., Румянцев А.Г., Борисенко О.В., Румянцев С.А. Особенности микробиома крови у детей с ожирением. Педиатрия имени Г.Н. Сперанского. 2022; 101 (5): 15–22. https://doi.org/10.24110/0031-403X-2022-101-5-15-22. [Kirilina I.V., Shestopalov A.V., Gaponov A.M., Kamaldinova D.R., Khusnutdinova D.R., Grigorieva T.V., Teplyakova E.D., Yudin S.M., Makarov V.V., Rumyantsev A.G., Borisenko O.V., Rumyantsev S.A. Features of the blood microbiome in obese children. Pediatria n.a. G.N. Speransky. 2022; 101 (5): 15–22. https://doi.org/10.24110/0031-403X-2022-101-5-15-22 (in Russian)].
- Murthy KGK., Deb A., Goonesekera S., SzabóC., Salzman A.L. Identification of Conserved Domains in Salmonella muenchen Flagellin That Are Essential for Its Ability to Activate TLR5 and to Induce an Inflammatory Response in Vitro. J. Biol. Chem. 2004; 279: 5667–75. https://doi.org/10.1074/jbc.M307759200.
- Bambou J-C., Giraud A., Menard S., Begue B., Rakotobe S., Heyman M., Taddei F., Cerf-Bensussan N., Gaboriau-Routhiau V. In Vitro and ex Vivo Activation of the TLR5 Signaling Pathway in Intestinal Epithelial Cells by a Commensal Escherichia coli Strain. J. Biol. Chem. 2004; 279: 42984–92. https://doi.org/10.1074/jbc.M405410200.
- Wu Z., Pan D., Guo Y., Sun Y., Zeng X. Peptidoglycan diversity and anti-inflammatory capacity in Lactobacillus strains. Carbohydr Polym. 2015; 128: 130–37. https://doi.org/10.1016/j.carbpol.2015.04.026.
- Wu Z., Pan D., Guo Y., Zeng X. Structure and anti-inflammatory capacity of peptidoglycan from Lactobacillus acidophilus in RAW-264.7 cells. Carbohydr Polym. 2013; 96: 466–73. https://doi.org/10.1016/j.carbpol.2013.04.028.
- Kwan JMC, Liang Y., Ng EWL., Sviriaeva E., Li C., Zhao Y., Zhang X-L., Liu X-W., Wong S.H., Qiao Y. In silico MS/MS prediction for peptidoglycan profiling uncovers novel anti-inflammatory peptidoglycan fragments of the gut microbiota. Chem Sci. 2024; 15 (5): 1846–59. https://doi.org/10.1039/d3sc05819k.
- Grangette C., Macho-Fernandez E., Pot B. Anti-inflammatory capacity of lactobacilli peptidoglycan: mucosal and systemic routes of administration promote similar effects – The Authors’ reply. Gut. 2012; 61: 784. https://doi.org/10.1136/gutjnl-2011-301194.
- Rhee S.H., Im E., Riegler M., Kokkotou E., O’Brien M., Pothoulakis C. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc Natl Acad Sci. 2005; 102 (38): 13610–5. https://doi.org/10.1073/pnas.0502174102.
- Yoon S., Kurnasov O., Natarajan V., Hong M., Gudkov A.V., Osterman A.L., Wilson I.A. Structural Basis of TLR5-Flagellin Recognition and Signaling. Science. 2012; 335: 859–64. https://doi.org/10.1126/science.1215584.
- Vijay-Kumar M., Gewirtz A.T. Flagellin: key target of mucosal innate immunity. Mucosal Immunol. 2009; 2: 197–205. https://doi.org/10.1038/mi.2009.9.
- Feng S., Zhang C. Chen S. He R., Chao G, Zhang S. TLR5 Signaling in the Regulation of Intestinal Mucosal Immunity. J. Inflamm Res. 2023; (16): 2491–01. https://doi.org/10.2147/JIR.S407521.
- Kukhtina N.B., Arefieva T.I., Ruleva N.Yu., Sidorova M.V., Azmuko A.A., Bespalova Zh.D., Krasnikova T.L. Peptide fragments of the fractalkine chemokine domain: Influence on migration of human monocytes. Russ J. Bioorganic Chem. 2012; (38): 584–89. https://doi.org/10.1134/S1068162012060088.
- McGinley A.M., Sutton C.E., Edwards S.C., Leane C.M., DeCourcey J., Teijeiro A., Hamilton J.A., Boon L., Djouder N., Mills KHG. Interleukin-17A Serves a Priming Role in Autoimmunity by Recruiting IL-1β-Producing Myeloid Cells that Promote Pathogenic T Cells. Immunity. 2020; (52): 342–56. https://doi.org/10.1016/j.immuni.2020.01.002.
- Ishigame H., Kakuta S., Nagai T., Kadoki M., Nambu A., Komiyama Y., Fujikado N., Tanahashi Y., Akitsu A., Kotaki H., Sudo K., Nakae S. Sasakawa C., Iwakura Y. Differential Roles of Interleukin-17A and -17F in Host Defense against Mucoepithelial Bacterial Infection and Allergic Responses. Immunity. 2009; 30: 108–19. https://doi.org/10.1016/j.immuni.2008.11.009.
- Kumar P., Chen K., Kolls J.K. Th17 cell based vaccines in mucosal immunity. Curr Opin Immunol. 2013; 25: 373–80. https://doi.org/10.1016/j.coi.2013.03.011.
- Mills KHG. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol. 2008; 38: 2636–49. https://doi.org/10.1002/eji.200838535.
- Beenen A.C., Sauerer T., Schaft N., Dörrie J. Beyond Cancer: Regulation and Function of PD-L1 in Health and Immune-Related Diseases. Int. J. Mol. Sci. 2022; 23: 8599. https://doi.org/10.3390/ijms23158599.
- Kawamura N., Katsuura G., Yamada-Goto N., Nakama R., Kambe Y., Miyata A., Furuyashiki T., Narumiya S., Ogawa Y., Inui A. Brain fractalkine-CX3CR1 signalling is anti-obesity system as anorexigenic and anti-inflammatory actions in diet-induced obese mice. Sci Rep. 2022; 12: 12604. https://doi.org/10.1038/s41598-022-16944-3.
- PolyákÁ., Ferenczi S., DénesÁ., Winkler Z., Kriszt R., Pintér-Kübler B., Kovács K.J. The fractalkine/Cx3CR1 system is implicated in the development of metabolic visceral adipose tissue inflammation in obesity. Brain Behav Immun. 2014; 38: 25–35. https://doi.org/10.1016/j.bbi.2014.01.010.
- Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm. Int. J. Mol. Sci. 2020; 21: 4535. https://doi.org/10.3390/ijms21124535.
补充文件
