Neurotoxic complications of cancer chemotherapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Neurotoxicity is a common complication of chemotherapy that negatively affects the quality of life of cancer patients. Damage to the nervous system affects both the peripheral nerves (peripheral neuropathy) and the central nervous system (chemo brain), manifesting itself as cognitive impairment.

The main of the review. Аnalysis and generalization of key aspects of chemotherapy neurotoxicity, including pathogenetic mechanisms of damage to the nervous system, characteristics of the most significant neurotoxic drugs and risk factors for these complications.

Material and methods. The review includes studies published between 2005 and 2024. The search for publications was conducted in the PubMed, Scopus, Web of Science, eLibrary, Cochrane Library, Springer, CyberLeninka, Wiley Online Library, Nature, ScienceDirect, Science, Cell, Frontiers databases using the main keywords. A total of 1240 articles were found, 63 sources were used for citation.

Results. The article reviews current data on the incidence of peripheral neuropathy in cancer patients (68%) and its long-term persistence in one third of patients. The main mechanisms of neurotoxicity (mitochondrial damage, impaired axonal transport, cytoskeletal dysfunction, activation of inflammatory and autoimmune reactions) are discussed. The causes of central neurotoxicity (impaired neurogenesis, neuronal DNA damage, glial activation, chronic neuroinflammation, and white matter demyelination) are highlighted. The key groups of neurotoxic drugs (platinum compounds, taxanes, vinca alkaloids, proteasome inhibitors, immunomodulators) and significant risk factors for neurotoxicity (old age, underlying neuropathy, diabetes mellitus, nutritional deficiency, chronic diseases, and genetic predisposition) are highlighted.

Conclusion. Despite progress in understanding the pathogenesis, effective methods for preventing and treating neurotoxic complications are limited, and reliable prognostic biomarkers have not been identified. Further interdisciplinary research into the mechanisms of nervous system damage and the development of personalized patient management strategies that optimize the effectiveness of antitumor therapy while minimizing neurological complications are needed.

Full Text

Restricted Access

About the authors

Lydia Semenovna Evert

Federal Research Center «Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences»; Khakass State University named after N.F. Katanov of the Ministry of Science and Higher Education of the Russian Federation

Email: lidiya_evert@mail.ru
ORCID iD: 0000-0003-0665-7428

Chief Researcher, Clinical Department of Somatic and Mental Health of Children, a separate unit – Research Institute of Medical Problems of the North, Professor of the Department of General Professional Disciplines, Medical Institute, Doctor of Medical Sciences

Russian Federation, Partizan Zheleznyak str., 3G, Krasnoyarsk, 660022; Lenin Avenue, 90, Abakan, 655017

Tatyana Vitalievna Potupchik

Federal State Budgetary Educational Institution of Higher Education «Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky» of the Ministry of Health of the Russian Federation

Email: potupchik_tatyana@mail.ru
ORCID iD: 0000-0003-1133-4447

Associate Professor, Department of Pharmacology and Clinical Pharmacology with a postgraduate course, Candidate of Medical Sciences

Russian Federation, Partizan Zheleznyak str., 1, Krasnoyarsk, 660022

Yulia Vladimirovna Saranchina

Khakass State University named after N.F. Katanov of the Ministry of Science and Higher Education of the Russian Federation

Author for correspondence.
Email: july.saran4ina2010@yandex.ru
ORCID iD: 0000-0002-2697-7317

Associate Professor of the Department of Fundamental Medicine, Medical Institute, Candidate of Biological Sciences

Russian Federation, Lenin Avenue, 90, Abakan, 655017

Madina Kureishevna Khadzieva

Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation

Email: beki.gi@bk.ru
ORCID iD: 0009-0004-4207-016X

5thyear student

Russian Federation, Ostrovityanova str., 1, building 6, Moscow, 117513

Varvara Sergeevna Samoyavcheva

Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation

Email: samoyavvarvara@gmail.com
ORCID iD: 0009-0004-0819-4206

5thyear student

Russian Federation, Ostrovityanova str., 1, building 6, Moscow, 117513

Rufina Ramil’evna Tsalikova

Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation

Email: traffic88@list.ru
ORCID iD: 0009-0007-4005-2322

5thyear student

Russian Federation, Ostrovityanova str., 1, building 6, Moscow, 117513

References

  1. Was H., Borkowska A., Bagues A. et al. Mechanisms of chemotherapy-induced neurotoxicity. Front Pharmacology. 2022; 13: 750507. doi: 10.3389/fphar.2022.750507.
  2. Rodwin R.L., Siddiq N.Z., Ehrlich B.E. et al. Biomarkers of chemotherapy-induced peripheral neuropathy: current status and future directions. Front Pain Res (Lausanne). 2022; 3: 864910. doi: 10.3389/fpain.2022.864910.
  3. Colvin L.A. Chemotherapy-induced peripheral neuropathy (CIPN): where are we now? Pain. 2019; 160 (1): 1–10. doi: 10.1097/j.pain.0000000000001540.
  4. Banach M., Juranek J.K., Zygulska A.L. Chemotherapy-induced neuropathies-a growing problem for patients and health care providers. Brain Behav. 2017; 7 (1): e00558. doi: 10.1002/brb3.558.
  5. Canta A., Pozzi E., Carozzi V.A. Mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy (CIPN). Toxics. 2015; 3 (2): 198–223. doi: 10.3390/toxics3020198.
  6. Chiorazzi A., Semperboni S., Marmiroli P. Current view in platinum drug mechanisms of peripheral neurotoxicity. Toxics. 2015; 3 (3): 304–21. doi: 10.3390/toxics3030304.
  7. Wang J.T., Medress Z.A., Barres B.A. Axon degeneration: molecular mechanisms of a self-destruction pathway. The J. of Cell Biology. 2012; 196 (1): 7–18. doi: 10.1083/jcb.201108111.
  8. Zajączkowska R., Kocot-Kępska M., Leppert W. et al. Mechanisms of chemotherapy-induced peripheral neuropathy. Int J. Mol. Sci. 2019; 20 (6): 1451. doi: 10.3390/ijms20061451.
  9. Flatters S.J.L., Bennett G.J. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain. 2006; 122 (3): 245–57. doi: 10.1016/j.pain.2006.01.037.
  10. Illias A.M., Gist A.C., Zhang H. et al. Chemokine CCL2 and its receptor CCR2 in the dorsal root ganglion contribute to oxaliplatin-induced mechanical hypersensitivity. Pain. 2018; 159 (7): 1308–16. doi: 10.1097/j.pain.0000000000001212.
  11. Old E.A., Nadkarni S, Grist J, et al. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. The J. of Clinical Investigation. 2014; 124 (5): 2023–36. doi: 10.1172/JCI71389.
  12. Pitarokoili K., Yoon M.-S., Kröger I. et al. Severe refractory CIDP: a case series of 10 patients treated with bortezomib. J. Neurol. 2017; 264 (9): 2010–20. doi: 10.1007/s00415-017-8599-4.
  13. Xu Y.-L., Zhao W.-H., Tang Z.-Y. et al. Guillain-Barrésyndrome in a patient with multiple myeloma after bortezomib therapy: a case report. World J. Clin. Cases. 2019; 7 (18): 2905–9. doi: 10.12998/wjcc.v7.i18.2905.
  14. Nasu S., Misawa S., Nakaseko C. et al. Bortezomib-induced neuropathy: axonal membrane depolarization precedes development of neuropathy. Clinical Neurophysiology: Official J. of the International Federation of Clinical Neurophysiology. 2014; 125 (2): 381–7. doi: 10.1016/j.clinph.2013.07.014.
  15. Taillibert S., Le Rhun E., Chamberlain M.C. Chemotherapy-relatedn neurotoxicity. Curr Neurol and Neurosci Rep. 2016; 16 (9): 81. doi: 10.1007/s11910-016-0686-x.
  16. Sikora E., Bielak-Zmijewska A., Dudkowska M. et al. Cellular senescence in brain aging. Front Aging Neurosci. 2021; 25 (13): 646924. doi: 10.3389/fnagi.2021.646924.
  17. Magge R.S., DeAngelis L.M. The double-edged sword: Neurotoxicity of chemotherapy. Blood Reviews. 2015; 29 (2): 93–100. doi: 10.1016/j.blre.2014.09.012.
  18. Wigmore P. The effect of systemic chemotherapy on neurogenesis, plasticity and memory. Current Topics in Behavioral Neurosciences. 2013; 15: 211–40. doi: 10.1007/7854_2012_235.
  19. Maynard S., Fang E.F., Scheibye-Knudsen M. et al. DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harbor Perspectives in Medicine. 2015; 5 (10): a025130. doi: 10.1101/cshperspect.a025130.
  20. Gibson E.M., Nagaraja S., Ocampo A. et al. Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell. 2019; 176 (1–2): 43–55.e13. doi: 10.1016/j.cell.2018.10.049.
  21. Scherling C.S., Smith A. Opening up the window into “Chemobrain”: a neuroimaging review. Sensors (Basel, Switzerland). 2013; 13 (3): 3169–203. doi: 10.3390/s130303169.
  22. Abraham J., Haut M.W., Moran M.T. et al. Adjuvant chemotherapy for breast cancer: effects on cerebral white matter seen in diffusion tensor imaging. Clinical Breast Cancer. 2008; 8 (1): 88–91. doi: 10.3816/CBC.2008.n.007.
  23. Jose N., Joel A., Selvakumar R.J. et al. Diagnosis and management of 5-fluorouracil (5-FU)-induced acute leukoencephalopathy: lessons learnt from a single-centre case series. J. Egypt Natl Canc Inst. 2022; 34 (1): 22. doi: 10.1186/s43046-022-00117-4.
  24. Shaw C., Baldwin A., Anderson C. Cognitive effects of chemotherapy: an integrative review. Eur J. of Oncol Nurs. 2021; 54: 102042. DOI: .1016/j.ejon.2021.102042.
  25. Staff N.P,. Cavaletti G., Islam B. et al. Platinum-induced peripheral neurotoxicity: from pathogenesis to treatment. J. Рeripher Nerv Syst . 2019; 24 (l2): 26–39. doi: 10.1111/jns.12335.
  26. Gebremedhn E.G., Shortland P.J., Mahns D.A. The incidence of acute oxaliplatin-induced neuropathy and its impact on treatment in the first cycle: a systematic review. BMC cancer. 2018; 18 (1): 410. doi: 10.1186/s12885-018-4185-0.
  27. Salehifar E., Janbabaei G., Alipour A. et al. Taxane-induced peripheral neuropathy and quality of life in breast cancer patients. J. Oncol Pharm Pract. 2020; 26 (6): 1421–8. doi: 10.1177/1078155219898511.
  28. Chan Y.-N., Jheng Y.-W., Wang P.-J. et al. Taxane-induced peripheral neuropathy: objective and subjective comparison between paclitaxel and docetaxel in patients with breast cancer. Clin. J. Oncol Nurs. 2019; 23 (5): 494–501. doi: 10.1188/19.CJON.494-501.
  29. Li G.-Z., Hu Y.-H., Li D.-Y. et al. Vincristine-induced peripheral neuropathy: A mini-review. Neurotoxicology. 2020; 81: 161–71. doi: 10.1016/j.neuro.2020.10.004.
  30. Mora E., Smith E.M.L., Donohoe C. et al. Vincristine-induced peripheral neuropathy in pediatric cancer patients. Am. J. of Cancer Research. 2016; 6 (11): 2416–30.
  31. Torre C.D., Zambello R., Cacciavillani M. et al. Lenalidomide long-term neurotoxicity: clinical and neurophysiologic prospective study. Neurology. 2016; 87 (11): 1161–6. doi: 10.1212/WNL.0000000000003093.
  32. Velasco R., Alberti P., Bruna J. et al. Bortezomib and other proteosome inhibitors-induced peripheral neurotoxicity: From pathogenesis to treatment. J. Peripher Nerv Syst. 2019; 24 (2): 52–62. doi: 10.1111/jns.12338.
  33. Hu B., Zhou Q., Wu T. et al. Efficacy and safety of subcutaneous versus intravenous bortezomib in multiple myeloma: a meta-analysis. Int J. Clin. Pharmacol Ther. 2017; 55 (4): 329–38. doi: 10.5414/CP202714.
  34. Tamburin S., Park S.B., Alberti P. et al. Taxane and epothilone-induced peripheral neurotoxicity: From pathogenesis to treatment. J. Peripher Nerv Syst. 2019; 24 (2): 40–51. doi: 10.1111/jns.12336.
  35. Velasco R., Domingo-Domenech E., Sureda A. Brentuximab-induced peripheral neurotoxicity: a multidisciplinary approach to manage an emerging challenge in Hodgkin lymphoma therapy. Cancers (Basel). 2021; 13 (23): 6125. doi: 10.3390/cancers13236125.
  36. Jahan N., Rehman S., Khan R. et al. Relative risk of peripheral neuropathy with ado-trastuzumab emtansine (T-DM1) compared to taxane-based regimens in human epidermal growth factor receptor 2 (HER2)-positive cancers: a systematic review and meta-analysis. Cureus. 2021; 13 (5): e15282. doi: 10.7759/cureus.15282.
  37. Matsuoka A., Maeda O., Mizutani T. et al. Bevacizumab exacerbates paclitaxel-induced neuropathy: a retrospective cohort study. PLoS ONE. 2016; 11 (12): e0168707. doi: 10.1371/journal.pone.0168707.
  38. Karki K., Adhikari S., Shrestha S. et al. Cytarabine-induced peripheral neuropathy in a young patient with acute myeloid leukemia: a case report. Ann Med Surg (Lond). 2024; 86 (5): 3082–5. doi: 10.1097/MS9.0000000000001937.
  39. Frisk P., Stålberg E., Strömberg B., Jakobson A null. Painful peripheral neuropathy after treatment with high-dose ifosfamide. Medical and Pediatric Oncology. 2001; 37 (4): 379–82. doi: 10.1002/mpo.1210.
  40. Hussain F., Rehman J., Chaudhry Q.U. et al. Methotrexate-induced leukoencephalopathy: a rare but life-threatening toxicity. J. Coll of Physicians Surg Pak. 2022; 32 (4): 44–6. doi: 10.29271/jcpsp.2022.Supp1.S44.
  41. Modi J.N., Cimino S.K. Incidence of ifosfamide induced encephalopathy in patients receiving concomitant fosaprepitant. J. Oncoly Pharm Pract. 2021; 27 (8): 1891–5. doi: 10.1177/1078155220971794.
  42. Chaguaceda C., Aguilera-Jiménez V., Gutierrez G. et al. Oral levetiracetam for prevention of busulfan-induced seizures in adult hematopoietic cell transplant. Int J Clin Pharm. 2020; 42 (2): 351–4. doi: 10.1007/s11096-020-00977-7.
  43. Kessler L., Koo C., Richter C.-P. et al. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am. J. Cancer Res. 2024; 14 (9): 4597–632. doi: 10.62347/OKGQ4382.
  44. Lacourt T.E., Heijnen C.J. Mechanisms of neurotoxic symptoms as a result of breast cancer and its treatment: considerations on the contribution of stress, inflammation, and cellular bioenergetics. Current Breast Cancer Reports. 2017; 9 (2): 70–81. doi: 10.1007/s12609-017-0245-8.
  45. Chen B.T., Ye N., Wong C.W. et al. Effects of chemotherapy on aging white matter microstructure: A longitudinal diffusion tensor imaging study. J. Geriatr Oncol. 2020; 11 (2): 290–6. doi: 10.1016/j.jgo.2019.09.016.
  46. Sekeres M.J., Bradley-Garcia M., Martinez-Canabal A. et al. Chemotherapy-induced cognitive impairment and hippocampal neurogenesis: a review of physiological mechanisms and interventions. Int. J. of Mol Sci. 2021; 22 (23): 12697. doi: 10.3390/ijms222312697.
  47. Walker C.H., Drew B.A., Antoon J.W. et al. Neurocognitive effects of chemotherapy and endocrine therapies in the treatment of breast cancer: recent perspectives. Cancer Investigation. 2012; 30 (2): 135–48. doi: 10.3109/07357907.2011.636116.
  48. Landry K., Thomas A.A. Neurological complications of CAR T vell therapy. Curr Oncol Rep. 2020; 22 (8): 83. doi: 10.1007/s11912-020-00935-6.
  49. Duong S.L., Barbiero F.J., Nowak R.J. et al. Neurotoxicities associated with immune checkpoint inhibitor therapy. J. Neurooncol. 2021; 152 (2): 265–77. doi: 10.1007/s11060-021-03695-w.
  50. Carr A.S., Vonberg F.W., Koay S. et al. Neurological complications of immune checkpoint inhibitors: a practical guide. Pract Neurol. 2025; 25 (2): 116–26. doi: 10.1136/pn-2024-004327.
  51. Argyriou A.A., Bruna J., Kalofonou F. et al. Incidence and risk factors for developing chemotherapy-induced neuropathic pain in 500 cancer patients: a file-based observational study. J. Peripheral Nerv Syst. 2024; 29 (1): 38–46. doi: 10.1111/jns.12616.
  52. Molassiotis A., Cheng H.L., Leung K.T. et al. Risk factors for chemotherapy-induced peripheral neuropathy in patients receiving taxane- and platinum-based chemotherapy. Brain Behav. 2019; 9 (6): e01312. doi: 10.1002/brb3.1312.
  53. Wong M.L., Cooper B.A., Paul S.M. et al. Age-related differences in patient-reported and objective measures of chemotherapy-induced peripheral neuropathy among cancer survivors. Support Care Cancer. 2019; 27 (10): 3905–12. doi: 10.1007/s00520-019-04695-3.
  54. Gu J., Lu H., Chen C. et al. Diabetes mellitus as a risk factor for chemotherapy-induced peripheral neuropathy: a meta-analysis. Support Care Cancer. 2021; 29 (12): 7461–9. doi: 10.1007/s00520-021-06321-7.
  55. Schloss J.M., Colosimo M., Airey C., Vitetta L. Chemotherapy-induced peripheral neuropathy (CIPN) and vitamin B12 deficiency. Supportive Care in Cancer: Official Journal of the Multinational Association of Supportive Care in Cancer. 2015; 23 (7): 1843–50. doi: 10.1007/s00520-015-2725-6.
  56. Sastry J., Kellie S.J. Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatric Hematology and Oncology. 2005; 22 (5): 441–5. doi: 10.1080/08880010590964381.
  57. Kissoon T., Gururangan S., Sladky J. Acute neurotoxicity following vincristine due to Charcot–Marie–Tooth disease in a young child with medulloblastoma. Neurooncol Pract. 2019; 6 (3): 179–84. doi: 10.1093/nop/npz002.
  58. Stackkhile K.D., Reur P.N., Kale S.R. et al. Genetic polymorphisms of DNA repair genes and their influence on paclitaxel based chemotherapy induced toxicity reactions in breast cancer patients. Asian Pac J. Cancer Prev. 2024; 25 (12): 4281–92. doi: 10.31557/APJCP.2024.25.12.4281.
  59. Vargas-Aliaga A., De la Haba M., Contreras M.J. et al. NeuroPredict: study of the predictive value of ABCB1 genetic polymorphisms and associated clinical factors in chronic chemotherapy-induced peripheral neuropathy (CIPN). Front Pharmacol. 2024; 15: 1352939. doi: 10.3389/fphar.2024.1352939.
  60. Das A., Ranadive N., Kinra M. et al. An overview on chemotherapy-induced cognitive Impairment and potential role of antidepressants. Curr Neuropharmacol. 2020; 18 (9): 838–51. doi: 10.2174/1570159X18666200221113842.
  61. Absatarova Y.S., Andreeva E.N., Evseeva Y.S. et al. Endocrine and psychosomatic disorders in patients with amenorrhea. Problemy Endokrinologii. 2024; 69 (6): 121–31. doi: 10.14341/probl13366.
  62. Rao V., Bhushan R., Kumari P. et al. Chemobrain: a review on mechanistic insight, targets and treatments. Adv Cancer Res. 2022; 155: 29–76. doi: 10.1016/bs.acr.2022.04.001.
  63. Fernandez H.R., Varma A., Flowers S.A. et al. Cancer chemotherapy related cognitive impairment and the impact of the Alzheimer’s disease risk factor APOE. Cancers. 2020; 12 (12): 3842. doi: 10.3390/cancers12123842.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Schematic representation of the mechanisms of action of the main anticancer drugs causing HIPN

Download (177KB)

Copyright (c) 2025 Russkiy Vrach Publishing House