Prospects for the application of nanotechnology in the development of antitumor drugs
- Authors: Seliverstov P.V.1, Ananyan M.A.2, Marchenko S.D.3, Stepanov M.R.2, Voznesenskaya E.A.3, Ilina K.V.4, Lyapustin K.Y.5
-
Affiliations:
- Federal State Budgetary Educational Institution of Higher Education “S.M. Kirov Military Medical Academy” of the Ministry of Health of the Russian Federation
- JSC “Advanced Technologies”
- Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- Federal State Budget Educational Institution of Higher Education “Tver State Medical University” of the Ministry of Health of the Russian Federation
- Federal State Budget Educational Institution of Higher Education “Saint Petersburg State University”, Ministry of Health of the Russian Federation
- Issue: Vol 23, No 1 (2025)
- Pages: 3-15
- Section: Reviews
- URL: https://journals.eco-vector.com/1728-2918/article/view/689281
- DOI: https://doi.org/10.29296/24999490-2025-01-01
- ID: 689281
Cite item
Abstract
Introduction. Nanotechnology represents an innovative direction in cancer drug development, enabling the creation of effective drug delivery systems with enhanced therapeutic properties.
Objective. To analyze the main types of nanoparticles used in oncology, evaluate their clinical effectiveness, and identify promising directions in nanotechnology development for cancer therapy.
Material and methods. Analysis of current scientific publications on the development and application of various types of nanoparticles in oncology, including clinical trial data and approved drugs.
Results. The physicochemical properties and therapeutic potential of liposomal, polymeric, and metallic nanoparticles are examined. Analysis of clinically approved nanomedicines and promising developments is presented. Ethical and regulatory aspects of nanotechnology applications in oncology are discussed.
Conclusion. Nanotechnology demonstrates significant potential in improving cancer therapy effectiveness. The development of “smart” nanomaterials, integration with CRISPR technologies, and creation of multifunctional nanosystems represent the most promising research directions.
Full Text

About the authors
Pavel V. Seliverstov
Federal State Budgetary Educational Institution of Higher Education “S.M. Kirov Military Medical Academy” of the Ministry of Health of the Russian Federation
Author for correspondence.
Email: seliverstov-pv@yandex.ru
ORCID iD: 0000-0001-5623-4226
Associate Professor 2nd (Department of Therapy for Advanced Training) of Physicians, Candidate of Medical Sciences, Аssociate Рrofessor
Russian Federation, Lebedeva St., 6, Saint Petersburg, 194044Mikhail A. Ananyan
JSC “Advanced Technologies”
Email: nanotech@nanotech.ru
ORCID iD: 0009-0007-9019-6981
general manager, Doctor of Engineering, academician of Russian Academy of Natural Sciences
Russian Federation, 119334, Moscow, Bardina St., 4, build. 23Sevara D. Marchenko
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: marchenko_s_d@staff.sechenov.ru
ORCID iD: 0000-0002-0177-6826
associate Professor at the Department of Organization and Management in the Field of Medicines Circulation, Institute of Professional education, Candidate of Pharmaceutical Sciences
Russian Federation, st. Trubetskaya, 8, build. 2, Moscow, 119991Mikhail R. Stepanov
JSC “Advanced Technologies”
Email: stepanson2008@gmail.com
ORCID iD: 0009-0003-0036-0495
the leading technologist
Russian Federation, 119334, Moscow, Bardina St., 4, build. 23Elizaveta A. Voznesenskaya
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: Mozatuz@yandex.ru
ORCID iD: 0009-0005-3957-4268
student
Russian Federation, st. Trubetskaya, 8, build. 2, Moscow, 119991Kristina V. Ilina
Federal State Budget Educational Institution of Higher Education “Tver State Medical University” of the Ministry of Health of the Russian Federation
Email: kristy796@mail.ru
ORCID iD: 0009-0005-4298-1681
student
Russian Federation, Sovetskaya st., 4, Tver, 170100Konstantin Y. Lyapustin
Federal State Budget Educational Institution of Higher Education “Saint Petersburg State University”, Ministry of Health of the Russian Federation
Email: lyapustin1910@yandex.ru
ORCID iD: 0009-0007-2920-3433
student
Russian Federation, Universitetskaya Emb., 7–9, Saint Petersburg, 199034References
- Селивёрстов П.В., Бакшеева А.Д., Корецкая П.С., Абдусаттаров И.З. Использование нанотехнологий при создании таргетных препаратов для лечения онкологических заболеваний. Молекулярная медицина. 2024; 22 (6): 40–51. https://doi.org/10.29296/24999490-2024-06-05. [Seliverstov P.V., Baksheeva A.D., Koretskaya P.S., Abdusattarov I.Z. Use of nanotechnology in the creation of targeted drugs for the treatment of oncological diseases. Molekulyarnaya meditsina. 2024; 22 (6): 40–51. https://doi.org/10.29296/24999490-2024-06-05 (in Russian)].
- Bangham A.D., Standish M.M., Watkins J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965; 13 (1): 238–52. https://doi.org/10.1016/S0022-2836(65)80093-6.
- Горбик В.С., Шпрах З.С., Козлова Ж.М., Салова В.Г. Липосомы как система таргетной доставки лекарственных средств (обзор). Российский биотерапевтический журнал. 2021;20 (1): 33–41. https://doi.org/10.17650/1726-9784-2021-20-1-33-41. [Gorbik V.S., Shprakh Z.S., Kozlova Z.M., Salova V.G. Liposomes as a targeted delivery system of drugs (review). Russian J. of Biotherapy. 2021; 20 (1): 33–41. https://doi.org/10.17650/1726-9784-2021-20-1-33-41 (in Russian)].
- Барышников А.Ю. Наноструктурированные липосомальные системы как средство доставки противоопухолевых препаратов. Вестник РАМН. 2012; 3: 23–31. Baryshnikov A. Yu. Nanostructured liposomal systems as a means of delivering antitumor drugs. Bulletin of the Russian Academy of Medical Sciences. 2012; 3: 23–31 (in Russian)].
- Колтаков И.А., Шилова Е.В., Бражникова А.Н., Артюхов В.Г. Создание липосом из соевого лецитина для доставки лекарственных препаратов. Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2022; 1: 117–21. [Koltakov I.A., Shilova E.V., Brazhnikova A.N., Artyukhov V.G. Creation of liposomes from soy lecithin for drug delivery. Bulletin of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2022; 1: 117–21 (in Russian)].
- Бурдаев Н.И., Николаева Л.Л., Косенко В.В., Шпрах З.С., Бунятян Н.Д. Липосомы как носители лекарственных средств: классификация, методы получения и применение. Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2023; 13 (2–1): 316–32. https://doi.org/10.30895/1991-2919-2023-508. [Burdaev N.I., Nikolaeva L.L., Kosenko V.V., Shprakh Z.S., Bunyatyan N.D. Liposomes as Drug Carriers: Classification, Preparation Methods, and Medicinal Use. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2023; 13 (2–1): 316–32. https://doi.org/10.30895/1991-2919-2023-508 (in Russian)].
- Райков А.О., Хашем А., Барышникова М.А. Липосомы для направленной доставки противоопухолевых препаратов. Российский биотерапевтический журнал. 2016; 15 (2): 90–6. https://doi.org/10.17650/1726-9784-2016-15-2-90-96. [Raikov A.O., Hashem A., Baryshnikova M.A. Liposomes as target delivery of antitumor drugs. Russian J. of Biotherapy. 2016; 15 (2): 90–6. https://doi.org/10.17650/1726-9784-2016-15-2-90-96 (in Russian)].
- Young C., Schluep T., Hwang J. et al. CRLX101 (formerly IT-101)-A Novel Nanopharmaceutical of Camptothecin in Clinical Development. Curr. Bioact. Compd. 2011; 7 (1): 8–14. https://doi.org/10.2174/157340711795163802.
- Whitehead K.A., Langer R., Anderson D.G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 2009; 8 (2): 129–38. https://doi.org/10.1038/nrd2742.
- Davis M.E., Zuckerman J.E., Choi C.H. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010; 464 (7291): 1067–70. https://doi.org/10.1038/nature08956.
- Kim T.Y., Kim D.W., Chung J.Y. et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 2004; 10 (11): 3708–16. https://doi.org/10.1158/1078-0432.CCR-03-0655.
- Boussif O., Lezoualc’h F., Zanta M.A. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA. 1995; 92 (16): 7297–301. https://doi.org/10.1073/pnas.92.16.7297.
- Serrano-Martinez A., Victoria-Montesinos D., Garcia-Muñoz A.M., Hernández-Sánchez P., Lucas-Abellán C., González-Louzao R. A Systematic Review of Clinical Trials on the Efficacy and Safety of CRLX101 Cyclodextrin-Based Nanomedicine for Cancer Treatment. Pharmaceutics. 2023; 15 (7): 1824. https://doi.org/10.3390/pharmaceutics15071824.
- Kopec W., Żak A., Jamróz D., Nakahata R., Yusa S.I., Gapsys V., Kepczynski M. Polycation-Anionic Lipid Membrane Interactions. Langmuir. 2020; 36 (42): 12435–50. https://doi.org/10.1021/acs.langmuir.0c01062.
- Pack D.W., Hoffman A.S., Pun S., Stayton P.S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005; 4 (7): 581–93. https://doi.org/10.1038/nrd1775.
- Danhier F., Ansorena E., Silva J.M. et al. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release. 2012; 161 (2): 505–22. https://doi.org/10.1016/j.jconrel.2012.01.043.
- Huang X., Jain P.K., El-Sayed I.H., El-Sayed M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008; 23 (3): 217–28. https://doi.org/10.1007/s10103-007-0470-x.
- Toth G.B., Varallyay C.G., Horvath A. et al. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 2017; 92 (1): 47–66. https://doi.org/10.1016/j.kint.2016.12.037.
- Khlebtsov N., Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 2011; 40 (3): 1647–71. https://doi.org/10.1039/c0cs00018c.
- Kumar A., Zhang X., Liang X.J. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol. Adv. 2013; 31 (5): 593–606. https://doi.org/10.1016/j.biotechadv.2012.10.002.
- Xie J., Lee S., Chen X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010; 62 (11): 1064–79. https://doi.org/10.1016/j.addr.2010.07.009.
- Maier-Hauff K., Ulrich F., Nestler D. et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 2011; 103 (2): 317-24. https://doi.org/10.1007/s11060-010-0389-0.
- Bonvalot S., Rutkowski P.L., Thariat J., et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2-3, randomised, controlled trial. Lancet Oncol. 2019; 20(8): 1148-59. https://doi.org/10.1016/S1470-2045(19)30326-2.
- Селивёрстов Д.П. Нанореволюция в медицине: синергия нанотехнологий, искусственного интеллекта и цифровых инноваций. Медицинская сестра. 2024; 26 (7): 44–48. DOI: https://doi.org/10.29296/25879979-2024-07-06. Seliverstov D.P. Nanorevolution in medicine: synergy of nanotechnology, artificial intelligence and digital innovation. Meditsinskaya sestra (The Nurse). 2024; 26 (7): 44–48. DOI: https://doi.org/10.29296/25879979-2024-07-06.
- Choi Y.E., Kwak J.W., Park J.W. Nanotechnology for early cancer detection. Sensors (Basel). 2010; 10 (1): 428–55. https://doi.org/10.3390/s100100428.
- Patel N.R., Pattni B.S., Abouzeid A.H., Torchilin V.P. Nanopreparations to overcome multidrug resistance in cancer. Adv. Drug Deliv. Rev. 2013; 65 (13–14): 1748–62. https://doi.org/10.1016/j.addr.2013.08.004.
- Riley R.S., Day E.S. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017; 9 (4): e1449. https://doi.org/10.1002/wnan.1449.
- Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986; 46 (12): 6387–92.
- Wilhelm S., Tavares A.J., Dai Q., et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016; 1: 16014. https://doi.org/10.1038/natrevmats.2016.14.
- Ishida T., Kashima S., Kiwada H. The contribution of phagocytic activity of liver macrophages to the accelerated blood clearance (ABC) phenomenon of PEGylated liposomes in rats. J. Control. Release. 2008; 126 (2): 162–5. https://doi.org/10.1016/j.jconrel.2007.11.009.
- Wang-Gillam A., Li C.P., Bodoky G. et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 2016; 387 (10018): 545–57. https://doi.org/10.1016/S0140-6736(15)00986-1.
- Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv. Drug Deliv. Rev. 2014; 71: 2–14. https://doi.org/10.1016/j.addr.2013.08.008.
- Resnik D.B., Tinkle S.S. Ethics in nanomedicine. Nanomedicine (Lond). 2007; 2 (3): 345–50. https://doi.org/10.2217/17435889.2.3.345.
- Etheridge M.L., Campbell S.A., Erdman A.G., et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013; 9 (1): 1–14. https://doi.org/10.1016/j.nano.2012.05.013.
Supplementary files
