Biochemical markers of inflammation in drug-resistant tuberculous meningitis (experimental study)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The determination of inflammatory markers used to monitor the course of the disease and monitor the effectiveness of treatment.

Goal. To evaluate biochemical markers of inflammation in cerebrospinal fluid (CSF) and blood serum in experimental meningitis caused by a multidrug-resistant strain of M. tuberculosis.

Material and methods. Three groups of rabbits studied: infection control (IC) – infected, untreated; treatment control (TC) – those who received anti-tuberculosis drugs (ATD) in accordance with the spectrum of drug sensitivity; the main group (MG) – infected who received roncoleukin (12.5 mcg/kg, 5 injections, 1 time every 3 days) against the background of ATD. The glucose, total protein, albumin, ceruloplasmin, elastase, adenosine deaminase (ADA), its isoenzymes evaluated in CSF and serum.

Results. After 4 months of treatment, the number of neutrophils in the CSF decreased in the TC and MG, and lymphocytes increased in the TC and a decrease in MG. The total protein level decreased in the MG. There was a tendency to decrease glucose in the MG compared to the TC. ADA decreased in the TC and MG. The serum levels of albumin, ceruloplasmin, glucose, total protein in these groups remained within the baseline values. ADA in the TC increased, while ADA-1 only tended to increase. In the MG, an increase in elastase detected.

Conclusion. A decrease in the activity of the inflammatory process was revealed in both the TC and MG groups, and more significant with the administration of roncoleukin along with ATD. Assessment of the activity of ADA and its isoenzymes in CSF is important in assessing the regression of a specific inflammatory process during the treatment of experimental TBM.

Full Text

Restricted Access

About the authors

Marina Evgenievna Dyakova

FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia

Author for correspondence.
Email: marinadyakova@yandex.ru
ORCID iD: 0000-0002-7810-880X

Senior Researcher, Research Laboratory of Microbiology, Biochemistry and Immunogenetics

Russian Federation, Ligovsky ave., 2–4, Saint-Petersburg, 191036

Tatyana Ivanovna Vinogradova

FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia

Email: vinogradova@spbniif.ru

Head of the Research Laboratory of Experimental Medicine,  Doctor of Medical Sciences, Professor

Russian Federation, Ligovsky ave., 2–4, Saint-Petersburg, 191036

Boris Mikhailovich Ariel

FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia

Email: arielboris@rambler.ru
ORCID iD: 0000-0002-7243-8621

Advisor to the Director, Doctor of Medical Sciences, Professor

Russian Federation, Ligovsky ave., 2–4, Saint-Petersburg, 191036

Dilyara Salievna Esmedlyayeva

FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia

Email: diljara-e@yandex.ru
ORCID iD: 0000-0002-9841-0061

Senior Researcher of the Research Laboratory of Microbiology, Biochemistry and Immunogenetics, Candidate of Biological Sciences

Russian Federation, Ligovsky ave., 2–4, Saint-Petersburg, 191036

Alexander Mikhailovich Panteleev

FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia

Email: alpanteleev@gmail.com
ORCID iD: 0000-0002-8307-7622

Leading Researcher of the Research Group of Epidemiology and Intellectual Monitoring, Doctor of Medical Sciences

Russian Federation, Ligovsky ave., 2–4, Saint-Petersburg, 191036

Natalia Mikhailovna Blum

FSBMEI HE “Military Medical Academy named after S.M. Kirov” of the Ministry of Defense of the Russian Federation

Email: blumn@mail.ru
ORCID iD: 0000-0003-1445-6714

Senior Lecturer at the Department of Pathological Anatomy

Russian Federation, Akademika Lebedeva str., 6J, Saint-Petersburg, 194044

Elena Radievna Mukhametshina

FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia

Email: doctor.mukhametshinaer@gmail.com
ORCID iD: 0000-0003-3312-0829

Radiologist, Magnetic Resonance Imaging laboratory

Russian Federation, Ligovsky ave., 2–4, Saint-Petersburg, 191036

Marine Zaurievna Dogonadze

FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia

Email: marine-md@mail.ru

Senior Researcher of the Research Laboratory of Microbiology, Biochemistry and Immunogenetics

Russian Federation, Ligovsky ave., 2–4, Saint-Petersburg, 191036

Alexander Sergeevich Kurdoyak

Saint Petersburg State Budgetary Healthcare Institution “City Anti-Tuberculosis Dispensary”

Email: kurdoyak_a_s@mail.ru

Head of department No.3

Russian Federation, Zvezdnaya St., 12, Saint-Petersburg, 196142

Natalya Vyacheslavovna Zabolotnyk

FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia

Email: zabol-natal@yandex.ru
ORCID iD: 0000-0002-9186-6461

Leading Researcher of the Research Laboratory of Experimental Medicine

Russian Federation, Ligovsky ave., 2–4, Saint-Petersburg, 191036

Anastasia Igorevna Lavrova

FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia

Email: aurebours@googlemail.com
ORCID iD: 0000-0002-8969-535X

Leading Researcher at the Scientific and Clinical Center for Spinal Surgery

Russian Federation, Ligovsky ave., 2–4, Saint-Petersburg, 191036

Arkady Anatolyevich Vishnevskiy

FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia

Email: aa.vichnevsky@spbniif.ru

Leading Researcher at the Scientific and Clinical Center of Pathology

Russian Federation, Ligovsky ave., 2–4, Saint-Petersburg, 191036

Petr Kazimirovich Yablonskiy

FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia; Saint-Petersburg State University

Email: piotr_yablonskii@mail.ru
ORCID iD: 0000-0003-4385-9643

Director, Head of Hospital Surgery Department, Faculty of Medicine, Doctor of Medical Sciences, Professor

Russian Federation, Ligovsky ave., 2–4, Saint-Petersburg, 191036; Universitetskaya nab. 7/9, Saint-Petersburg, 199034

References

  1. Струков А.И. Формы легочного туберкулеза в морфологическом освещении. «Библиотека врача –патологоанатома». Научно-практический журнал им. Н.Н. Аничкова. 2014; 151: 87. [Strukov A.I. Forms of pulmonary tuberculosis in themorphological point of view. «Library of a pathologist» Scientific and practical J. named after N.N. Anichkov. 2014; 151: 87 (in Russian)].
  2. Корнетова Н.В., Крузе А.Н., Нестерова А.И., Ариэль Б.М. Туберкулез мозговых оболочек и центральной нервной системы. Опыт клинической диагностики в Санкт-Петербурге на протяжении 50 лет. Медицинский Альянс. 2020; 8 (1): 14–24. [Kornetova N., Kruse A., Nesterova A., Ariel B. Tuberculosis of the meninges and central nervous system. Experience of clinical diagnostics in St. Petersburg for 50 years. Medical Alliance. 2020; 8 (1): 14–24 (in Russian)].
  3. Wilkinson R.J., Rohlwink U., Misra U.K., van Crevel R., Mai N.T.H., Dooley K.E., Caws M. et al. Tuberculous Meningitis. Nature Reviews Neurology. 2017; 13 (10): 581–98. doi: 10.1038/nrneurol.2017.120
  4. Manyelo C.M., Solomons R.S., Walzl G., Chegou N.N. Tuberculous meningitis: pathogenesis, immune responses, diagnostic challenges, and the potential of biomarker-based approaches. J. Clin. Microbiol. 2021; 59 (3): e01771–20. doi: 10.1128/JCM.01771-20
  5. Poh X.Y., Loh F.K., Friedland J.S., Ong C.W.M. Neutrophil-mediated immunopathology and matrix metalloproteinases in central nervous system – tuberculosis. Front. Immunol. 2022; 12: 788976. doi: 10.3389/fimmu.2021.788976
  6. Barnacle J.R., Davis A.G., Wilkinson R.J. Recent advances in understanding the human host immune response in tuberculous meningitis. Front. Immunol. 2024; 14: 326651. doi: 10.3389/fimmu.2023.1326651
  7. Subbian S., Venketaraman V. Editorial: Advances in the management of tuberculosis meningitis. Front Immunol. 2024; 15: 1433345. doi: 10.3389/fimmu.2024.1433345.
  8. Wasserman S., Donovan J., Kestelyn E., Watson J.A., Aarnoutse R.E., Barnacle J.R., Boulware D.R. et al. Advancing the chemotherapy of tuberculous meningitis: a consensus view. Lancet Infect. 2025; 25 (1): e47–e58. doi: 10.1016/S1473-3099(24)00512-7.
  9. Синицын М.В., Богородская Е.М., Родина О.В., Кубракова Е.П., Романова Е.Ю., Бугун А.В. Поражение центральной нервной системы у больных туберкулезом в современных эпидемических условиях. Инфекционные болезни: новости, мнения, обучение. 2018; 7 (1): 111–20. doi: 10.24411/2305-3496-2018-0001. [Sinitsyn M.V., Bodskaya E.M., Rodina O.V., Kubryakova E.P., Romanova E.Yu., Bugun A.V. The damage of the central nervous system in the patients with tuberculosis in modern epidemiological conditions. Infectious Diseases: News, Opinions, Training. 2018; 7 (1): 111–20. doi: 10.24411/2305-3496-2018-00015. (in Russian)]
  10. Герасимова А.А., Пантелеев А.М., Мокроусов И.В. ВИЧ-ассоциированный туберкулез с поражением центральной нервной системы (обзор литературы). Медицинский Альянс. 2020; 8 (4): 25–31. doi: 10.36422/23076348-2020-8-4-25-31. [Gerasimova A.A., Panteleev A.M., Mokrousov I.V. HIV-associated tuberculosis with damage to the central nervous system (literature review). Medical Alliance. 2020; 8 (4): 25–31. doi: 10.36422/23076348-2020-8-4-25-31. (in Russian)]
  11. Lu H.-J., Guo D., Wei Q.-Q. Potential of neuroinflammation-modulating strategies in tuberculous meningitis: targeting microglia. Aging Dis. 2024; 15 (3): 1255–76. doi: 10.14336/AD.2023.0311
  12. Dong T.H.K., Donovan J., Ngoc N.M., Thu D.D.A.T., Nghia H.D.T., Oanh P.K.N., Phu N.H.et al. A novel diagnostic model for tuberculous meningitis using Bayesian latent class analysis. BMC Infect Dis. 2024; 24 (1): 163. doi: 10.1186/s12879-024-08992-z.
  13. Marx G.E., Chan E.D. Tuberculous meningitis: diagnosis and treatment overview. Tuberc Res Treat. 2011; 2011: 798764. doi: 10.1155/2011/798764.
  14. Pasipanodya J., Gumbo T. An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agents Chemother. 2011; 55: 24–34. doi: 10.1128/aac.00749-10.
  15. Tsenova L., Mangaliso B., Muller G., Chen Y., Freedman V.H., Stirling D., Kaplan G. Use of IMiD3, a thalidomide analog, as an adjunct to therapy for experimental tuberculous meningitis. Antimicrob Agents Chemother. 2002; 46 (6): 1887–95. doi: 10.1128/AAC.46.6.1887-1895.2002.
  16. Majeed S., Radotra B.D., Sharma S. Adjunctive role of MMP-9 inhibition along with conventional anti-tubercular drugs against experimental tuberculous meningitis. Int J. Exp Pathol. 2016; 97: 230–7. doi: 10.1111/iep.12191.
  17. Tucker E.W., Guglieri-Lopez B., Ordonez A.A., Ritchie B., Klunk M.H., Sharma R., ChangY.S. et al. Noninvasive 11C-rifampin positron emission tomography reveals drug biodistribution in tuberculous meningitis. Sci Transl Med. 2019; 10 (470): eaau0965. doi: 10.1126/scitranslmed.aau0965
  18. Rich A.R., McCordock H.A. The pathogenesis of tuberculous meningitis. Bulletin of the Johns Hopkins Hospital. 1933; 52: 5–37.
  19. Jain S.K., Tobin D.M., Tucker E.W., Venketaraman V., Ordonez A.A., Jayashankar L., Siddiqi O.K.et al.Tuberculous meningitis: a roadmap for advancing basic and translational research. Nat Immunol. 2018; 19 (6): 521–5. doi: 10.1038/s41590-018-0119-x
  20. Cho B.-H., Kim B.C., Yoon G.-J., Choi S.-M., Chang J., Lee S.-H., Park M.-S. et al. Adenosine deaminase activity in cerebrospinal fluid and serum for the diagnosis of tuberculous meningitis. Clinical Neurology and Neurosurgery. 2013; 115: 1831–6. doi: 10.1016/j.clineuro.2013.05.017
  21. Habib A., Amin Z.A., Raza S.H., Aamir S. Diagnostic accuracy of cerebrospinal fluid adenosine deaminase in detecting Tuberculous Meningitis. Pak J. Med. Sci. 2018; 34 (5): 1215–8. doi: 10.12669/pjms.345.13585
  22. Ye Q., Yan W. Adenosine deaminase from the cerebrospinal fluid for the diagnosis of tuberculous meningitis: A meta-analysis. Trop Med Int Health. 2023; 28 (3): 175–85. doi: 10.1111/tmi.13849
  23. Hasko G., Cronstein B.N. Adenosine: an endogenous regulator of innate immunity. Trends Immunol. 2004; 25 (1): 33–9. doi: 10.1016/j.it.2003.11.003
  24. Antonioli L., Csóka B., Fornai M., Colucci R., Kókai E., Drandizzi C. and Haskó Adenosine and inflammation: what’s new on the horizon? Drug Discov. Today. 2014; 19 (8): 1051–68. doi: 10.1016/j.drudis.2014.02.010
  25. Mokrousov I., Chernyaeva E., Vyazovaya A., Skiba Y., Solovieva N., Valcheva V., Levina K. Et al. Rapid Assay for Detection of the Epidemiologically Important Central Asian/Russian Strain of the Mycobacterium tuberculosis Beijing Genotype. J. Clin. Microbiol. 2018; 55 (2): e01551–17. doi: 10.1128/JCM.01551-17EDN:YHTOVT
  26. Dallenga T., Repnik U., Corleis B., Eich J., Reimer R., Griffiths G.W., Schaible U.E. M. tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by macrophages. Cell Host Microbe. 2017; 22 (4): 519–30. doi: 10.1016/j.chom.2017.09.003
  27. Thuong N.T.T., Vinh D.N., Hai H.T., Thu D.D.A., Nhat L.T.H., Heemskerk D., Bang N.D., Caws M., Nai N.T.H., Thwaites G.E. Pretreatment cerebrospinal fluid bacterial load correlates with inflammatory response and predicts neurological events during tuberculous meningitis treatment. J. Infect Dis. 2019; 219 (6): 986–95. doi: 10.1093/infdis/jiy588
  28. Скрипченко Н.В., Алексеева Л.А., Иващенко И.А., Кривошеенко Е.М. Цереброспинальная жидкость и перспективы ее изучения. Российский вестник пеританологии и педиатрии. 2011; 6: 86–97. [Skripchenko N.V., AlekseyevaL.A, Ivashchenko I.A., Krivosheyenko E.M. Cerebrospinal fluid and prospects for its study.Russian bulletin of perinatology and pediatrics. 2011; 6: 86–97 (in Russian)]
  29. Kälvegren H., Fridfeldt J., Bengtsson T. The role of plasma adenosine deaminase in chemoattractant-stimulated oxygen radical production in neutrophils. Eur. J. Cell Biol. 2010; 89 (6): 462–7. DOI: 10.1016 / j. ejcb.2009.12.004
  30. Antonioli L., Fornai M., Blandizzi C., Pacher P., Hasko G. Adenosine signaling and the immune system: When a lot could be too much. Immunol. Lett. 2019; 205: 9–15. doi: 10.1016/j.imlet.2018.04.006
  31. Almolda B., Gonzalez B., Castellano B. Are microglial cells the regulators of lymphocyte responses in the CNS? Front Cell Neurosci. 2015; 9: 440. doi: 10.3389/fncel.2015.00440
  32. Spanos J.P., Hsu N.-J., Jacobs M. Microglia are crucial regulators of neuro-immunity during central nervous system tuberculosis. Front Cell Neurosci. 2015; 9: 182. doi: 10.3389/fncel.2015.00182
  33. Rohlwink U.K., Figaji A., Wilkinson K.A., Horswell S., Sesay A.K., Deffur A., Rohlwink U.K., Figaji A., Wilkinson K.A., Horswell S., Sesay A.K., Deffur A., Enslin N., Solomons R., Toorn R.V., Eley B., Levin M., Wilkinson R.J., Lai R.P.J. Tuberculous meningitis in children is characterized by compartmentalized immune responses and neural excitotoxicity. Nat Commun. 2019; 10: 3767. doi: 10.1038/s41467-019-11783-9.
  34. Bynoe M.S., Viret C., Angela Yan A., Kim D.-G. Adenosine receptor signaling: a key to opening the blood–brain door. Fluids Barriers CNS. 2015; 12: 20. doi: 10.1186/s12987-015-0017-7
  35. Zavialov A.V, Gracia E., Glaichenhaus N., Franco R., Zavialov A.V., Lauvau G. Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J. of Leukocyte Biology. 2010; 88 (2): 279–90. doi: 10.1189/jlb.1109764
  36. Tiwari-Heckler S., Yee E.U., Yalcin Y., Yalcin Y., Park J., Nguyen D.-H.T., Gao W., Csizmadia E., Afdhal N., Mukamal K.J., Robson S.C., Lai M., Schwartz R.E., Jiang Z.C. Adenosine deaminase 2 produced by infiltrative monocytes promotes liver fibrosis in nonalcoholic fatty liver disease. Cell Rep. 2021; 37 (4): 109897. doi: 10.1016/j.celrep.2021.109897
  37. Hochepied T., Berger F., Baumann H., Libert C. Alpha-1- acid glycoprotein: an acute phase protein with inflammantory and immunomodulating properties. Cytokine Growth Factor Rev.2003; 14 (1): 25–34. DOI: 10.1016/ S1359-6101(02)00054-0
  38. Nathan C., Ce Q.W., Halbwachs-Mecarelli L., Jin W.W. Albumin inhibits neutrophil spreading and hydrogen peroxide release by blocking the shedding of CD43 (Sialophorin, Leukosialin). The J. of Cell Biol. 1993; 122 (1): 243–56. doi: 10.1083/jcb.122.1.243
  39. Franco R., Pacheco R., Gatell J.M., Gallart T., Lluis C. Enzymatic and extraenzymatic role of adenosine deaminase 1 in T-cell-dendritic cell contacts and in alterations of the immune function. Crit. Rev. Immunol. 2007; 27: 495–509. doi: 10.1615/critrevimmunol.v27.i6.10
  40. Hasko G., Linden J., Cronstein B., Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov. 2008; 7 (9): 759–70. doi: 10.1038/nrd2638
  41. Zavialov A.V., Yu X., Spillmann D., Lauvau G., Zavialov A.V. Structural basis for the growth factor activity of human adenosine deaminase ADA2. J. Biol. Chem. 2010; 285 (16): 12367–77. doi: 10.1074/jbc.M109.083527
  42. Витовская М.Л., Заболотных Н.В., Виноградова Т.И., Васильева С.Н., Кафтырев А.С., Ариэль Б.М., Кириллова Е.С., Новицкая Т.А., Искровский С.В., Сердобинцев М.С. Влияние ронколейкина на репаративные процессы костной ткани при экспериментальном туберкулезном остите. Травматология и ортопедия России. 2013; 69 (3): 80–7. [Vitovskaya M.L., Zabolotnykh N.V., Vinogradova T.I., Vasilyeva S.N., Kaftyrev A.S., Ariel B.M., Kirillova E.S., Novitskaya T.A., Iskrovskiy S.V., Serdobintsev M.S. The influence of roncoleukin on reparative processes of bonetissue in experimental tuberculous osteitis. Traumatology and Orthopedics of Russia. 2013; 69 (3): 80–7 (in Russian)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. MR images of the rabbit brain in sagittal and axial projections: а – healthy (uninfected rabbit) – signs of signal amplification along the membranes and in the brain are not detected; б and в – MR-signs of menigoencephalomyelitis in infected (untreated) animals: б and в – signal amplification along the membranes of stem structures along the anterior and left lateral surfaces of the medulla oblongata and spinal cord; в – signs of nodular contrast in the right lateral cords of the medulla oblongata and spinal cord, 4×5 in size 5×6 mm with clear contours

Download (196KB)
3. Fig. 2. Dynamics of ADA, ADA-2, and elastase activity in different groups of rabbits: a) infection control – solid line (circle), б) treatment control – dashed line (square) в) the main group is dotted (rhombus)

Download (169KB)
4. Fig. 3. a – is the brain of a rabbit from the IC group. Epithelioid cell granulomas with giant multinucleated Langhans type cells; staining of preparations with hematoxylin and eosin, ×200; б, в – the brain of rabbits from the TC and MG groups, respectively. Epithelioid cell granulomas without giant Langhans cells, with central micronecrosis; staining of preparations with hematoxylin and eosin, ×100

Download (445KB)
5. Fig. 4. a, б, в – the brain of rabbits of groups IC, MG and TC, respectively. Scanty perivascular infiltrates consisting mainly of lymphocytes and microglial cells in the IC group, pronounced lymphoplasmocytic capillary infiltration in the MG group, clutch-like infiltrates consisting of epithelioid cells and lymphocytes in the TC group Note. Staining of preparations with hematoxylin and eosin, ×200.

Download (321KB)

Copyright (c) 2025 Russkiy Vrach Publishing House