Biochemical markers of inflammation in drug-resistant tuberculous meningitis (experimental study)
- 作者: Dyakova M.E.1, Vinogradova T.I.1, Ariel B.M.1, Esmedlyayeva D.S.1, Panteleev A.M.1, Blum N.M.2, Mukhametshina E.R.1, Dogonadze M.Z.1, Kurdoyak A.S.3, Zabolotnyk N.V.1, Lavrova A.I.1, Vishnevskiy A.A.1, Yablonskiy P.K.1,4
-
隶属关系:
- FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia
- FSBMEI HE “Military Medical Academy named after S.M. Kirov” of the Ministry of Defense of the Russian Federation
- Saint Petersburg State Budgetary Healthcare Institution “City Anti-Tuberculosis Dispensary”
- Saint-Petersburg State University
- 期: 卷 23, 编号 5 (2025)
- 页面: 10-20
- 栏目: Original research
- URL: https://journals.eco-vector.com/1728-2918/article/view/696243
- DOI: https://doi.org/10.29296/24999490-2025-05-02
- ID: 696243
如何引用文章
详细
Introduction. The determination of inflammatory markers used to monitor the course of the disease and monitor the effectiveness of treatment.
Goal. To evaluate biochemical markers of inflammation in cerebrospinal fluid (CSF) and blood serum in experimental meningitis caused by a multidrug-resistant strain of M. tuberculosis.
Material and methods. Three groups of rabbits studied: infection control (IC) – infected, untreated; treatment control (TC) – those who received anti-tuberculosis drugs (ATD) in accordance with the spectrum of drug sensitivity; the main group (MG) – infected who received roncoleukin (12.5 mcg/kg, 5 injections, 1 time every 3 days) against the background of ATD. The glucose, total protein, albumin, ceruloplasmin, elastase, adenosine deaminase (ADA), its isoenzymes evaluated in CSF and serum.
Results. After 4 months of treatment, the number of neutrophils in the CSF decreased in the TC and MG, and lymphocytes increased in the TC and a decrease in MG. The total protein level decreased in the MG. There was a tendency to decrease glucose in the MG compared to the TC. ADA decreased in the TC and MG. The serum levels of albumin, ceruloplasmin, glucose, total protein in these groups remained within the baseline values. ADA in the TC increased, while ADA-1 only tended to increase. In the MG, an increase in elastase detected.
Conclusion. A decrease in the activity of the inflammatory process was revealed in both the TC and MG groups, and more significant with the administration of roncoleukin along with ATD. Assessment of the activity of ADA and its isoenzymes in CSF is important in assessing the regression of a specific inflammatory process during the treatment of experimental TBM.
全文:
作者简介
Marina Dyakova
FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia
编辑信件的主要联系方式.
Email: marinadyakova@yandex.ru
ORCID iD: 0000-0002-7810-880X
Senior Researcher, Research Laboratory of Microbiology, Biochemistry and Immunogenetics
俄罗斯联邦, Ligovsky ave., 2–4, Saint-Petersburg, 191036Tatyana Vinogradova
FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia
Email: vinogradova@spbniif.ru
Head of the Research Laboratory of Experimental Medicine, Doctor of Medical Sciences, Professor
俄罗斯联邦, Ligovsky ave., 2–4, Saint-Petersburg, 191036Boris Ariel
FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia
Email: arielboris@rambler.ru
ORCID iD: 0000-0002-7243-8621
Advisor to the Director, Doctor of Medical Sciences, Professor
俄罗斯联邦, Ligovsky ave., 2–4, Saint-Petersburg, 191036Dilyara Esmedlyayeva
FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia
Email: diljara-e@yandex.ru
ORCID iD: 0000-0002-9841-0061
Senior Researcher of the Research Laboratory of Microbiology, Biochemistry and Immunogenetics, Candidate of Biological Sciences
俄罗斯联邦, Ligovsky ave., 2–4, Saint-Petersburg, 191036Alexander Panteleev
FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia
Email: alpanteleev@gmail.com
ORCID iD: 0000-0002-8307-7622
Leading Researcher of the Research Group of Epidemiology and Intellectual Monitoring, Doctor of Medical Sciences
俄罗斯联邦, Ligovsky ave., 2–4, Saint-Petersburg, 191036Natalia Blum
FSBMEI HE “Military Medical Academy named after S.M. Kirov” of the Ministry of Defense of the Russian Federation
Email: blumn@mail.ru
ORCID iD: 0000-0003-1445-6714
Senior Lecturer at the Department of Pathological Anatomy
俄罗斯联邦, Akademika Lebedeva str., 6J, Saint-Petersburg, 194044Elena Mukhametshina
FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia
Email: doctor.mukhametshinaer@gmail.com
ORCID iD: 0000-0003-3312-0829
Radiologist, Magnetic Resonance Imaging laboratory
俄罗斯联邦, Ligovsky ave., 2–4, Saint-Petersburg, 191036Marine Dogonadze
FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia
Email: marine-md@mail.ru
Senior Researcher of the Research Laboratory of Microbiology, Biochemistry and Immunogenetics
俄罗斯联邦, Ligovsky ave., 2–4, Saint-Petersburg, 191036Alexander Kurdoyak
Saint Petersburg State Budgetary Healthcare Institution “City Anti-Tuberculosis Dispensary”
Email: kurdoyak_a_s@mail.ru
Head of department No.3
俄罗斯联邦, Zvezdnaya St., 12, Saint-Petersburg, 196142Natalya Zabolotnyk
FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia
Email: zabol-natal@yandex.ru
ORCID iD: 0000-0002-9186-6461
Leading Researcher of the Research Laboratory of Experimental Medicine
俄罗斯联邦, Ligovsky ave., 2–4, Saint-Petersburg, 191036Anastasia Lavrova
FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia
Email: aurebours@googlemail.com
ORCID iD: 0000-0002-8969-535X
Leading Researcher at the Scientific and Clinical Center for Spinal Surgery
俄罗斯联邦, Ligovsky ave., 2–4, Saint-Petersburg, 191036Arkady Vishnevskiy
FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia
Email: aa.vichnevsky@spbniif.ru
Leading Researcher at the Scientific and Clinical Center of Pathology
俄罗斯联邦, Ligovsky ave., 2–4, Saint-Petersburg, 191036Petr Yablonskiy
FSBEI HE “Saint-Petersburg Research Institute of Phthisiopulmonology” of the Ministry of Health of Russia; Saint-Petersburg State University
Email: piotr_yablonskii@mail.ru
ORCID iD: 0000-0003-4385-9643
Director, Head of Hospital Surgery Department, Faculty of Medicine, Doctor of Medical Sciences, Professor
俄罗斯联邦, Ligovsky ave., 2–4, Saint-Petersburg, 191036; Universitetskaya nab. 7/9, Saint-Petersburg, 199034参考
- Струков А.И. Формы легочного туберкулеза в морфологическом освещении. «Библиотека врача –патологоанатома». Научно-практический журнал им. Н.Н. Аничкова. 2014; 151: 87. [Strukov A.I. Forms of pulmonary tuberculosis in themorphological point of view. «Library of a pathologist» Scientific and practical J. named after N.N. Anichkov. 2014; 151: 87 (in Russian)].
- Корнетова Н.В., Крузе А.Н., Нестерова А.И., Ариэль Б.М. Туберкулез мозговых оболочек и центральной нервной системы. Опыт клинической диагностики в Санкт-Петербурге на протяжении 50 лет. Медицинский Альянс. 2020; 8 (1): 14–24. [Kornetova N., Kruse A., Nesterova A., Ariel B. Tuberculosis of the meninges and central nervous system. Experience of clinical diagnostics in St. Petersburg for 50 years. Medical Alliance. 2020; 8 (1): 14–24 (in Russian)].
- Wilkinson R.J., Rohlwink U., Misra U.K., van Crevel R., Mai N.T.H., Dooley K.E., Caws M. et al. Tuberculous Meningitis. Nature Reviews Neurology. 2017; 13 (10): 581–98. doi: 10.1038/nrneurol.2017.120
- Manyelo C.M., Solomons R.S., Walzl G., Chegou N.N. Tuberculous meningitis: pathogenesis, immune responses, diagnostic challenges, and the potential of biomarker-based approaches. J. Clin. Microbiol. 2021; 59 (3): e01771–20. doi: 10.1128/JCM.01771-20
- Poh X.Y., Loh F.K., Friedland J.S., Ong C.W.M. Neutrophil-mediated immunopathology and matrix metalloproteinases in central nervous system – tuberculosis. Front. Immunol. 2022; 12: 788976. doi: 10.3389/fimmu.2021.788976
- Barnacle J.R., Davis A.G., Wilkinson R.J. Recent advances in understanding the human host immune response in tuberculous meningitis. Front. Immunol. 2024; 14: 326651. doi: 10.3389/fimmu.2023.1326651
- Subbian S., Venketaraman V. Editorial: Advances in the management of tuberculosis meningitis. Front Immunol. 2024; 15: 1433345. doi: 10.3389/fimmu.2024.1433345.
- Wasserman S., Donovan J., Kestelyn E., Watson J.A., Aarnoutse R.E., Barnacle J.R., Boulware D.R. et al. Advancing the chemotherapy of tuberculous meningitis: a consensus view. Lancet Infect. 2025; 25 (1): e47–e58. doi: 10.1016/S1473-3099(24)00512-7.
- Синицын М.В., Богородская Е.М., Родина О.В., Кубракова Е.П., Романова Е.Ю., Бугун А.В. Поражение центральной нервной системы у больных туберкулезом в современных эпидемических условиях. Инфекционные болезни: новости, мнения, обучение. 2018; 7 (1): 111–20. doi: 10.24411/2305-3496-2018-0001. [Sinitsyn M.V., Bodskaya E.M., Rodina O.V., Kubryakova E.P., Romanova E.Yu., Bugun A.V. The damage of the central nervous system in the patients with tuberculosis in modern epidemiological conditions. Infectious Diseases: News, Opinions, Training. 2018; 7 (1): 111–20. doi: 10.24411/2305-3496-2018-00015. (in Russian)]
- Герасимова А.А., Пантелеев А.М., Мокроусов И.В. ВИЧ-ассоциированный туберкулез с поражением центральной нервной системы (обзор литературы). Медицинский Альянс. 2020; 8 (4): 25–31. doi: 10.36422/23076348-2020-8-4-25-31. [Gerasimova A.A., Panteleev A.M., Mokrousov I.V. HIV-associated tuberculosis with damage to the central nervous system (literature review). Medical Alliance. 2020; 8 (4): 25–31. doi: 10.36422/23076348-2020-8-4-25-31. (in Russian)]
- Lu H.-J., Guo D., Wei Q.-Q. Potential of neuroinflammation-modulating strategies in tuberculous meningitis: targeting microglia. Aging Dis. 2024; 15 (3): 1255–76. doi: 10.14336/AD.2023.0311
- Dong T.H.K., Donovan J., Ngoc N.M., Thu D.D.A.T., Nghia H.D.T., Oanh P.K.N., Phu N.H.et al. A novel diagnostic model for tuberculous meningitis using Bayesian latent class analysis. BMC Infect Dis. 2024; 24 (1): 163. doi: 10.1186/s12879-024-08992-z.
- Marx G.E., Chan E.D. Tuberculous meningitis: diagnosis and treatment overview. Tuberc Res Treat. 2011; 2011: 798764. doi: 10.1155/2011/798764.
- Pasipanodya J., Gumbo T. An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agents Chemother. 2011; 55: 24–34. doi: 10.1128/aac.00749-10.
- Tsenova L., Mangaliso B., Muller G., Chen Y., Freedman V.H., Stirling D., Kaplan G. Use of IMiD3, a thalidomide analog, as an adjunct to therapy for experimental tuberculous meningitis. Antimicrob Agents Chemother. 2002; 46 (6): 1887–95. doi: 10.1128/AAC.46.6.1887-1895.2002.
- Majeed S., Radotra B.D., Sharma S. Adjunctive role of MMP-9 inhibition along with conventional anti-tubercular drugs against experimental tuberculous meningitis. Int J. Exp Pathol. 2016; 97: 230–7. doi: 10.1111/iep.12191.
- Tucker E.W., Guglieri-Lopez B., Ordonez A.A., Ritchie B., Klunk M.H., Sharma R., ChangY.S. et al. Noninvasive 11C-rifampin positron emission tomography reveals drug biodistribution in tuberculous meningitis. Sci Transl Med. 2019; 10 (470): eaau0965. doi: 10.1126/scitranslmed.aau0965
- Rich A.R., McCordock H.A. The pathogenesis of tuberculous meningitis. Bulletin of the Johns Hopkins Hospital. 1933; 52: 5–37.
- Jain S.K., Tobin D.M., Tucker E.W., Venketaraman V., Ordonez A.A., Jayashankar L., Siddiqi O.K.et al.Tuberculous meningitis: a roadmap for advancing basic and translational research. Nat Immunol. 2018; 19 (6): 521–5. doi: 10.1038/s41590-018-0119-x
- Cho B.-H., Kim B.C., Yoon G.-J., Choi S.-M., Chang J., Lee S.-H., Park M.-S. et al. Adenosine deaminase activity in cerebrospinal fluid and serum for the diagnosis of tuberculous meningitis. Clinical Neurology and Neurosurgery. 2013; 115: 1831–6. doi: 10.1016/j.clineuro.2013.05.017
- Habib A., Amin Z.A., Raza S.H., Aamir S. Diagnostic accuracy of cerebrospinal fluid adenosine deaminase in detecting Tuberculous Meningitis. Pak J. Med. Sci. 2018; 34 (5): 1215–8. doi: 10.12669/pjms.345.13585
- Ye Q., Yan W. Adenosine deaminase from the cerebrospinal fluid for the diagnosis of tuberculous meningitis: A meta-analysis. Trop Med Int Health. 2023; 28 (3): 175–85. doi: 10.1111/tmi.13849
- Hasko G., Cronstein B.N. Adenosine: an endogenous regulator of innate immunity. Trends Immunol. 2004; 25 (1): 33–9. doi: 10.1016/j.it.2003.11.003
- Antonioli L., Csóka B., Fornai M., Colucci R., Kókai E., Drandizzi C. and Haskó Adenosine and inflammation: what’s new on the horizon? Drug Discov. Today. 2014; 19 (8): 1051–68. doi: 10.1016/j.drudis.2014.02.010
- Mokrousov I., Chernyaeva E., Vyazovaya A., Skiba Y., Solovieva N., Valcheva V., Levina K. Et al. Rapid Assay for Detection of the Epidemiologically Important Central Asian/Russian Strain of the Mycobacterium tuberculosis Beijing Genotype. J. Clin. Microbiol. 2018; 55 (2): e01551–17. doi: 10.1128/JCM.01551-17EDN:YHTOVT
- Dallenga T., Repnik U., Corleis B., Eich J., Reimer R., Griffiths G.W., Schaible U.E. M. tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by macrophages. Cell Host Microbe. 2017; 22 (4): 519–30. doi: 10.1016/j.chom.2017.09.003
- Thuong N.T.T., Vinh D.N., Hai H.T., Thu D.D.A., Nhat L.T.H., Heemskerk D., Bang N.D., Caws M., Nai N.T.H., Thwaites G.E. Pretreatment cerebrospinal fluid bacterial load correlates with inflammatory response and predicts neurological events during tuberculous meningitis treatment. J. Infect Dis. 2019; 219 (6): 986–95. doi: 10.1093/infdis/jiy588
- Скрипченко Н.В., Алексеева Л.А., Иващенко И.А., Кривошеенко Е.М. Цереброспинальная жидкость и перспективы ее изучения. Российский вестник пеританологии и педиатрии. 2011; 6: 86–97. [Skripchenko N.V., AlekseyevaL.A, Ivashchenko I.A., Krivosheyenko E.M. Cerebrospinal fluid and prospects for its study.Russian bulletin of perinatology and pediatrics. 2011; 6: 86–97 (in Russian)]
- Kälvegren H., Fridfeldt J., Bengtsson T. The role of plasma adenosine deaminase in chemoattractant-stimulated oxygen radical production in neutrophils. Eur. J. Cell Biol. 2010; 89 (6): 462–7. DOI: 10.1016 / j. ejcb.2009.12.004
- Antonioli L., Fornai M., Blandizzi C., Pacher P., Hasko G. Adenosine signaling and the immune system: When a lot could be too much. Immunol. Lett. 2019; 205: 9–15. doi: 10.1016/j.imlet.2018.04.006
- Almolda B., Gonzalez B., Castellano B. Are microglial cells the regulators of lymphocyte responses in the CNS? Front Cell Neurosci. 2015; 9: 440. doi: 10.3389/fncel.2015.00440
- Spanos J.P., Hsu N.-J., Jacobs M. Microglia are crucial regulators of neuro-immunity during central nervous system tuberculosis. Front Cell Neurosci. 2015; 9: 182. doi: 10.3389/fncel.2015.00182
- Rohlwink U.K., Figaji A., Wilkinson K.A., Horswell S., Sesay A.K., Deffur A., Rohlwink U.K., Figaji A., Wilkinson K.A., Horswell S., Sesay A.K., Deffur A., Enslin N., Solomons R., Toorn R.V., Eley B., Levin M., Wilkinson R.J., Lai R.P.J. Tuberculous meningitis in children is characterized by compartmentalized immune responses and neural excitotoxicity. Nat Commun. 2019; 10: 3767. doi: 10.1038/s41467-019-11783-9.
- Bynoe M.S., Viret C., Angela Yan A., Kim D.-G. Adenosine receptor signaling: a key to opening the blood–brain door. Fluids Barriers CNS. 2015; 12: 20. doi: 10.1186/s12987-015-0017-7
- Zavialov A.V, Gracia E., Glaichenhaus N., Franco R., Zavialov A.V., Lauvau G. Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J. of Leukocyte Biology. 2010; 88 (2): 279–90. doi: 10.1189/jlb.1109764
- Tiwari-Heckler S., Yee E.U., Yalcin Y., Yalcin Y., Park J., Nguyen D.-H.T., Gao W., Csizmadia E., Afdhal N., Mukamal K.J., Robson S.C., Lai M., Schwartz R.E., Jiang Z.C. Adenosine deaminase 2 produced by infiltrative monocytes promotes liver fibrosis in nonalcoholic fatty liver disease. Cell Rep. 2021; 37 (4): 109897. doi: 10.1016/j.celrep.2021.109897
- Hochepied T., Berger F., Baumann H., Libert C. Alpha-1- acid glycoprotein: an acute phase protein with inflammantory and immunomodulating properties. Cytokine Growth Factor Rev.2003; 14 (1): 25–34. DOI: 10.1016/ S1359-6101(02)00054-0
- Nathan C., Ce Q.W., Halbwachs-Mecarelli L., Jin W.W. Albumin inhibits neutrophil spreading and hydrogen peroxide release by blocking the shedding of CD43 (Sialophorin, Leukosialin). The J. of Cell Biol. 1993; 122 (1): 243–56. doi: 10.1083/jcb.122.1.243
- Franco R., Pacheco R., Gatell J.M., Gallart T., Lluis C. Enzymatic and extraenzymatic role of adenosine deaminase 1 in T-cell-dendritic cell contacts and in alterations of the immune function. Crit. Rev. Immunol. 2007; 27: 495–509. doi: 10.1615/critrevimmunol.v27.i6.10
- Hasko G., Linden J., Cronstein B., Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov. 2008; 7 (9): 759–70. doi: 10.1038/nrd2638
- Zavialov A.V., Yu X., Spillmann D., Lauvau G., Zavialov A.V. Structural basis for the growth factor activity of human adenosine deaminase ADA2. J. Biol. Chem. 2010; 285 (16): 12367–77. doi: 10.1074/jbc.M109.083527
- Витовская М.Л., Заболотных Н.В., Виноградова Т.И., Васильева С.Н., Кафтырев А.С., Ариэль Б.М., Кириллова Е.С., Новицкая Т.А., Искровский С.В., Сердобинцев М.С. Влияние ронколейкина на репаративные процессы костной ткани при экспериментальном туберкулезном остите. Травматология и ортопедия России. 2013; 69 (3): 80–7. [Vitovskaya M.L., Zabolotnykh N.V., Vinogradova T.I., Vasilyeva S.N., Kaftyrev A.S., Ariel B.M., Kirillova E.S., Novitskaya T.A., Iskrovskiy S.V., Serdobintsev M.S. The influence of roncoleukin on reparative processes of bonetissue in experimental tuberculous osteitis. Traumatology and Orthopedics of Russia. 2013; 69 (3): 80–7 (in Russian)]
补充文件





