The effect of a high-fat diet and phytocomposition based on B. vulgaris, C. bergamia, D. villosa and L. meyenii on the expression of genes for carbohydrate and lipid metabolism enzymes in the liver of rats
- Authors: Yankovskaya S.V.1, Mosalev K.I.1, Deulin I.Y.1, Pal’chikova N.A.1, Selyatickaya V.G.1
-
Affiliations:
- FSBSI «Federal Research Center for Fundamental and Translational Medicine»
- Issue: Vol 23, No 5 (2025)
- Pages: 31-39
- Section: Original research
- URL: https://journals.eco-vector.com/1728-2918/article/view/696245
- DOI: https://doi.org/10.29296/24999490-2025-05-04
- ID: 696245
Cite item
Abstract
Introduction. The liver serves as a buffer for the accumulation and utilization of excess intake of nutritional fats, the intake of plant compounds can improve metabolic processes in the liver, but the molecular mechanisms of this phenomenon have been little studied.
The purpose of the study. To study the effect of oral administration of a phytocomposition based on B. vulgaris, C. bergamia, D. villosa and L. meyenii (PC) on the expression levels of carbohydrate and lipid metabolism genes in the liver of rats on a standard diet (SD) or a high-fat diet (HFD).
Material and methods. 48 male Wistar rats were divided into groups (G) of equal numbers. During 4 and 7 weeks, animals G1 and G5, respectively, received SD (the proportion of fat in total calories was 11%), G2 and G6 – SD+PC, G3 and G7 – HFD (the proportion of fat in total calories was 36% due to the addition of lard to the diet), G4 and G8 – HFD+PC. After the animals were removed from the experiment, the liver was fixed in 1 ml of «Riti» reagent (Diem, Russia) and stored at -20 °C until the study. The expression of the genes acetyl-CoA carboxylase A (Acaca), acetyl-CoA carboxylase B (Acacb), fatty acid synthase (Fasn), stearyl-CoA desaturase (Scd), glucokinase (Gck) and pyruvate kinase (Pklr) was determined in the liver by reverse transcription polymerase chain reaction.
Results and discussion. It has been shown that HFD causes phase changes in the expression of lipid and carbohydrate metabolism genes in the rat liver: at week 4, there is an increase in Fasn expression, a decrease in Acaca and Pklr, indicating activation of lipogenesis; at week 7, a decrease in Fasn and Acacb expression, indicating activation of β-oxidation of fatty acids, an increase in the expression of Gck and Acaca indicates an increase in glycogenogenesis. The administration of PC potentiates these compensatory shifts, significantly enhancing the expression of Acaca and Gck. Correlation analysis showed that taking PC in SD conditions increased the number of correlations from 2 to 6 (new connections: Acacb and Pklr with Fasn and Scd), and in HFD conditions it transformed the feedback Acaca with Acacb into direct Acaca with Gck and Pklr.
Conclusion. The data obtained indicate that biologically active compounds of the studied PC contribute to the enhancement of the conjugation of carbohydrate and lipid metabolism and the activation of glycogenogenesis in the liver due to their direct or indirect action as inducers of lipid and carbohydrate metabolism gene expression, thereby leading to a restructuring of metabolic pathways aimed at compensating for HFD.
Keywords
Full Text
About the authors
Svetlana Valer’evna Yankovskaya
FSBSI «Federal Research Center for Fundamental and Translational Medicine»
Author for correspondence.
Email: svetlanaiankovskaia@gmail.com
ORCID iD: 0000-0001-8486-3185
Senior Researcher at the Laboratory of Endocrinology
Russian Federation, Timakova St., 2, Novosibirsk, 630060Kirill Igorevich Mosalev
FSBSI «Federal Research Center for Fundamental and Translational Medicine»
Email: mosalevkir@mail.ru
ORCID iD: 0000-0001-8968-3968
Junior Researcher at the Laboratory for the Study of Viral Diseases of Plants and Animals
Russian Federation, Timakova St., 2, Novosibirsk, 630060Il’ya Yur’evich Deulin
FSBSI «Federal Research Center for Fundamental and Translational Medicine»
Email: diy@frcftm.ru
ORCID iD: 0000-0001-9470-4153
Researcher at the Laboratory for the Study of Viral Diseases of Plants and Animals
Russian Federation, Timakova St., 2, Novosibirsk, 630060Natal’ya Aleksandrovna Pal’chikova
FSBSI «Federal Research Center for Fundamental and Translational Medicine»
Email: napalchikova@frcftm.ru
ORCID iD: 0000-0002-3093-0749
Scientific Secretary, Doctor of Biological Sciences
Russian Federation, Timakova St., 2, Novosibirsk, 630060Vera Georgievna Selyatickaya
FSBSI «Federal Research Center for Fundamental and Translational Medicine»
Email: vgselyatitskaya@frcftm.ru
ORCID iD: 0000-0003-4534-7289
Director, Doctor of Biological Sciences, Professor
Russian Federation, Timakova St., 2, Novosibirsk, 630060References
- World Health Organization. Obese and overweight. 2024.
- Аметов А.С., Туркина С.В. Дисфункция жировой ткани: в фокусе ожирение, сахарный диабет и сердечно-сосудистые заболевания, неалкогольная жировая болезнь печени. Эндокринология: Новости. Мнения. Обучение. 2024; 13 (4): 84–93. [Ametov A.S., Turkina S.V. Adipose tissue dysfunction: focus on obesity, diabetes and cardiovascular disease, nonalcoholic fatty liver disease. Endocrinology: News, Opinions, Training. 2024; 13 (4): 84–93. doi: 10.33029/2304-9529-2024-13-4-84-93 (in Russian)].
- Maki K.C., Dicklin M.R., Kirkpatrick C.F. Saturated fats and cardiovascular health: Current evidence and controversies. Journal of clinical lipidology. 2021; 15 (6): 765–72. doi: 10.1016/j.jacl.2021.09.049
- Flessa C.M., Nasiri-Ansari N., Kyrou I., Leca B.M., Lianou M., Chatzigeorgiou A., Kaltsas G. et al. Genetic and diet-induced animal models for non-alcoholic fatty liver disease (NAFLD) research. International J. of Molecular Sciences. 2022; 23 (24): 15791. doi: 10.3390/ijms232415791
- Lu Y., Li Y., Sun Y., Ma S., Zhang K., Tang X., Chen A. Differences in energy metabolism and mitochondrial redox status account for the differences in propensity for developing obesity in rats fed on high-fat diet. Food Science & Nutrition. 2021; 9 (3): 1603–13. doi: 10.1002/fsn3.2134
- Long F., Bhatti M.R., Kellenberger A., Sun W., Modica S., Höring M., Liebisch G. et al. A low-carbohydrate diet induces hepatic insulin resistance and metabolic associated fatty liver disease in mice. Molecular metabolism. 2023; 69: 101675. doi: 10.1016/j.molmet.2023.101675
- Калашникова К.Е., Шрайнер Е.В., Быстрова В.И., Лифшиц Г.И. Генетические факторы, способствующие развитию метаболического синдрома. Фармакогенетика и фармакогеномика. 2024; 2: 5–12. [Kalashnikova K.E., Shrayner E.V., Bystrova V.I., Lifshits G.I. Genetic factors contributing to the development of metabolic syndrome. Pharmacogenetics and pharmacogenomics. 2024; 2: 5–12. doi: 10.37489/2588-0527-2024-2-5-12 (in Russian)].
- Апрятин С.А., Гмошинский И.В., Трусов Н.В., Тутельян В.А. Эффекторные звенья метаболизма при диет-индуцированном и генетически детерминированном ожирении: полнотранскриптомное исследование ткани печени на экспериментальных моделях у грызунов. Acta Biomedica Scientifica. 2023; 8 (3): 25–41. [Apryatin S.A., Trusov N.V., Gmoshinski I.V., Tutelyan V.A. Metabolism effector links in diet-induced and genetically-based obesity: A full-transcriptome study of liver tissue in experimental models in rodents. Acta biomedica scientifica. 2023; 8 (3): 25–41. doi: 10.29413/ABS.2023-8.3.3 (in Russian)].
- Салль Т.С., Щербакова Е.С., Ситкин С.И., Вахитов Т.Я., Бакулин И.Г., Демьянова Е.В. Молекулярные механизмы развития неалкогольной жировой болезни печени. Профилактическая медицина. 2021; 24 (4): 120 31. [Sall T.S., Shcherbakova E.S., Sitkin S.I., Vakhitov T.Ya., Bakulin I.G., Demyanova E.V. Molecular mechanisms of non-alcoholic fatty liver disease development. Russian J. of Preventive Medicine. 2021; 24 (4): 120–31. doi: 10.17116/profmed202124041120 (in Russian)].
- Semova I., Biddinger S.B. Triglycerides in nonalcoholic fatty liver disease: guilty until proven innocent. Trends in pharmacological sciences. 2021; 42 (3): 183–90. doi: 10.1016/j.tips.2020.12.001
- Zhang Z., Ji G., Li M. Glucokinase regulatory protein: a balancing act between glucose and lipid metabolism in NAFLD. Frontiers in endocrinology. 2023; 14: 1247611. doi: 10.3389/fendo.2023.1247611
- Трусов Н.В., Семин М.О., Шипелин В.А., Апрятин С.А., Гмошинский, И.В. Экспрессия генов в печени крыс, получавших с рационом комплекс ресвератрола и L-карнитина, в норме и при ожирении. Вопросы питания. 2021; 90 (5): 25–37. [Trusov N.V., Semin M.O., Shipelin V.A., Apryatin S.A., Gmoshinski I.V. Liver gene expression in normal and obese rats received resveratrol and L-carnitine. Problems of Nutrition. 2021; 90 (5): 25–37. doi: 10.33029/0042-8833-2021-90-5-25-37 (in Russian)].
- Khateeb S., Albalawi A., Alkhedaide A. Regulatory effect of diosgenin on lipogenic genes expression in high-fat diet-induced obesity in mice. Saudi J. of Biological Sciences. 2021; 28 (1): 1026–32. doi: 10.1016/j.sjbs.2020.11.045
- Troitsky A.V., Deulin I.Y., Kim L.B., Putyatina A.N., Selyatitskaya V.G., Voevoda M.I. Pathophysiological Approach to the Development of Plant Compositions with ‘Anti-Age’ Activity. Acta Scientific Medical Sciences 9.5. 2025; 119–33. doi: 10.31080/ASMS.2025.09.2075
- Деулин И.Ю., Пальчикова Н.А., Молодых О.П., Синявская А.М., Субботовская А.И., Селятицкая В.Г. Динамический анализ формирования ожирения у крыс, содержавшихся на высокожировой диете. Сибирский научный медицинский журнал. 2025; 45 (3): 104–11. [Deulin I.Yu., Palchikova N.A., Molodykh O.P., Sinyavskaya A.M., Subbotovskaya A.I., Selyatitskaya V.G. Dynamic analysis of obesity formation in rats kept on a high-fat diet. Siberian Scientific Medical J. 2025; 45 (3): 104–11. doi: 10.18699/SSMJ20250311 (in Russian)].
- Saleh Al-maamari J.N., Rahmadi M., Panggono S.M., Prameswari D.A., Pratiwi E.D., Ardianto C., Balan S.S. et al. The effects of quercetin on the expression of SREBP-1c mRNA in high-fat diet-induced NAFLD in mice. Journal of basic and clinical physiology and pharmacology. 2021; 32 (4): 637–44. doi: 10.1515/jbcpp-2020-0423
- Lee S.M., Muratalla J., Diaz-Ruiz A., Remon-Ruiz P., McCann M., Liew C. W., Kineman R.D. et al. Rosiglitazone requires hepatocyte PPARγ expression to promote steatosis in male mice with diet-induced obesity. Endocrinology 2021; 62 (11): bqab175. doi: 10.1210/endocr/bqab175
- Fang C., Pan J., Qu N., Lei Y., Han J., Zhang J., Han D. The AMPK pathway in fatty liver disease. Frontiers in Physiology. 2022; 13: 970292. doi: 10.3389/fphys.2022.970292
- Cao H., Cai Q., Guo W., Su Q., Qin H., Wang T., Xian Y. et al. Malonylation of Acetyl-CoA carboxylase 1 promotes hepatic steatosis and is attenuated by ketogenic diet in NAFLD. Cell Reports. 2023; 42 (4). doi: 10.1016/j.celrep.2023.112319
- Abu Aqel Y., Alnesf A., Aigha I.I., Islam Z., Kolatkar P.R., Teo A., Abdelalim E.M. et al. Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogenesis. Cellular & Molecular Biology Letters. 2024; 29 (1): 120. doi: 10.1186/s11658-024-00640-3
- Yuan M., Shi M., Yang H., Ashraf S., Iqbal S., Turkez H., Boren J. et al. Targeting PKLR in liver diseases. Trends in Endocrinology & Metabolism. 2025; 4. doi: 10.1016/j.tem.2025.03.009
- Cholico G.N., Orlowska K., Fling R.R., Sink W.J., Zacharewski N.A., Fader K.A., Nault R. et al. Consequences of reprogramming acetyl-CoA metabolism by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in the mouse liver. Scientific Reports. 2023; 13 (1): 4138. doi: 10.1038/s41598-023-31087-9
- Yuasa M., Kawabeta K., Uemura M., Koba K., Sawamura H., Watanabe, T. Dietary high-dose biotin intake activates fat oxidation and hepatic carnitine palmitoyltransferase in rat. Journal of Nutritional Science and Vitaminology. 2022; 68 (4): 250–9. doi: 10.3177/jnsv.68.250
- Fernandes G.W., Bocco B.M. Hepatic mediators of lipid metabolism and ketogenesis: focus on fatty liver and diabetes. Current Diabetes Reviews. 2021; 17 (7): 81–92. doi: 10.2174/1573399816999201103141216
- Ntambi J.M. The role of Stearoyl-CoA desaturase in hepatic de novo lipogenesis. Biochemical and Biophysical Research Communications. 2022; 633: 81–3. DOI: 81-83. 10.1016/j.bbrc.2022.08.092
- Baiges-Gaya G., Fernández-Arroyo S., Luciano-Mateo F., Cabré N., Rodriguez-Tomàs E., Hernández-Aguilera A., Castañé H. et al. Hepatic metabolic adaptation and adipose tissue expansion are altered in mice with steatohepatitis induced by high-fat high sucrose diet. The Journal of Nutritional Biochemistry. 2021; 89: 108559. doi: 10.1016/j.jnutbio.2020.108559
- Недосугова Л.В. Роль эндокринной системы в поддержании гомеостаза глюкозы в норме и при патологии. РМЖ. Медицинское обозрение. 2021; 5(9): 586-591. [Nedosugova L.V. Role of the endocrine system in maintaining glucose homeostasis in health and disease. Russian Medical Inquiry. 2021; 5 (9): 586–91. doi: 10.32364/2587-6821-2021-5-9-586-591 (in Russian)].
Supplementary files


