Анализ транскиптома в онкологии и дерматологии
- Авторы: Сергеева Е.Ю.1, Фефелова Ю.А.1, Бардецкая Я.В.1
-
Учреждения:
- ФГБОУ ВО КрасГМУ им. проф. В.Ф. Войно-Ясенецкого Минздрава России
- Выпуск: Том 20, № 1 (2022)
- Страницы: 3-8
- Раздел: Статьи
- URL: https://journals.eco-vector.com/1728-2918/article/view/113544
- DOI: https://doi.org/10.29296/24999490-2022-01-01
- ID: 113544
Цитировать
Полный текст



Аннотация
Актуальность. Персонифицированный подход к терапии болезней позволил выделить нескольких подтипов заболевания, отличающихся при схожей клинической картине молекулярными механизмами развития. Для определения фенотипов болезней используются различные омиксные технологии, включающие геномику, эпигеномику, транскриптомику, протеомику. Транскриптомика - это исследование полного профиля РНК, кодируемого геномом отдельной клетки в специфическое время или в специфических условиях. Цель обзора - обобщить современные данные о перспективных методах исследования транскриптома - микрочипировании (microarray) и секвенировании (секвенирование нового поколения), раскрыть преимущества и особенности каждого метода, применение их в дерматологии и онкологии. Материал и методы. Материалами послужили результаты исследований по данной теме отечественных и зарубежных авторов и собственные опубликованные данные за последние 13лет (2007-2020). Анализировались публикации, входящие в базы данных PubMed, EMBASE, MedLine. Результаты. В статье обобщены современные данные о микрочипировании и секвенировании нового поколения в контексте исследований транскриптома. Выбор метода обусловлен особенностями исследования и задачами, стоящими перед исследователями. В последние годы исследования транскриптома применяются во многих областях медицины, в частности, онкологии и дерматологии, способствуя созданию индивидуальных подходов к лечению и более точному прогнозу течения заболеваний. Заключение. Транскриптомные исследования, позволяя оценивать изменения профиля экспрессии генов в ответ на действие этиологических факторов, расширяют представления о патогенезе заболеваний, что должно способствовать повышению эффективности терапии.
Ключевые слова
Полный текст

Об авторах
Екатерина Юрьевна Сергеева
ФГБОУ ВО КрасГМУ им. проф. В.Ф. Войно-Ясенецкого Минздрава России
Email: e.yu.sergeeva@mail.ru
профессор кафедры патологической физиологии им. В.В., доктор биологических наук
Юлия Анатольевна Фефелова
ФГБОУ ВО КрасГМУ им. проф. В.Ф. Войно-Ясенецкого Минздрава России
Email: fefelovaja@mail.ru
доцент кафедры патологической физиологии им. В.В., доктор биологических наук
Ярославна Владимировна Бардецкая
ФГБОУ ВО КрасГМУ им. проф. В.Ф. Войно-Ясенецкого Минздрава России
Автор, ответственный за переписку.
Email: byvkgpu@yandex.ru
доцент кафедры патологической физиологии им. В.В., кандидат медицинских наук
Список литературы
- Рукша Т.Г., Аксененко М.Б., Сергеева Е.Ю., Фефелова Ю.А. Меланома кожи: от системной биологии к персонифицированной терапии. Вестник дерматологии и венерологии. 2013; 1: 4-8.
- Aldridge S., Teichmann S.A. Single cell transcriptomics comes of age. Nat. Commun. 2020; 11 (1): 4307. https://doi.org/10.1038/s41467-020-18158-5
- Chu C., Fang Z., Hua X., Yang Y., Chen E., Cowley A.W. Jr., Liang M., Liu P., Lu Y. deGPS is a powerful tool for detecting differential expression in RNA-sequencing studies. BMC Genomics. 2015; 16 (1): 455. https://doi.org/10.1186/s12864-015-1676-0
- Royce T.E., Rozowsky J.S., Gerstein M.B. Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res. 2007; 35 (15): e99. https://doi.org/10.1093/nar/gkm549
- Wang Z., Gerstein M., Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev Genet. 2009; 10 (1): 57-63. https://doi.org/10.1038/nrg2484
- Yousef M., Kumar A., Bakir-Gungor B. Application of biological domain knowledge based feature selection on gene expression data. Entropy (Basel). 2020; 23 (1): 2. https://doi.org/10.3390/e23010002
- Perscheid C., Grasnick B., Uflacker M. Integrative gene selection on gene expression data: providing biological context to traditional approaches. J. Integr. Bioin form. 2018; 16 (1): 20180064. https://doi.org/10.1515/jib-2018-0064
- Pinero J., Bravo Ä., Queralt-Rosinach N., Gutierrez-Sacristan A., Deu-Pons J., Centeno E., Garcia-Garcia J., Sanz F., Furlong L.I. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017; 45 (D1): 833-9. https://doi.org/10.1093/nar/gkw943
- Cloonan N., Forrest A.R., Kolle G., Gardiner B.B., Faulkner G.J., Brown M.K., Taylor D.F., Steptoe A.L., Wani S., Bethel G., Robertson A.J., Perkins A.C., Bruce S.J., Lee C.C., Ranade S.S., Peckham H.E., Manning J.M., McKernan K.J., Grimmond S.M. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods. 2008; 5 (7): 613-9. https://doi.org/10.1038/nmeth.1223
- Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M., Snyder M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008; 320 (5881): 1344-9. https://doi.org/10.1126/science.1158441
- Song Y., Xu X., Wang W., Tian T., Zhu Z., Yang C. Single cell transcriptomics: moving towards multi-omics. Analyst. 2019; 144 (10): 3172-89. https://doi.org/10.1039/c8an01852a
- Tokura Y., Hayano S. Subtypes of atopic dermatitis: From phenotype to endotype. Allergol. Int. 2021; S1323-8930(21)00079-4. https://doi.org/10.10Wj.alit.2021.07.003
- Tao Z., Shi A., Li R., Wang Y., Wang X., Zhao J. Microarray bioinformatics in cancer- a review. J. BUON. 2017; 22 (4): 838-43.
- Stark R., Grzelak M., Hadfield J. RNA sequencing: the teenage years. Nat. Rev Genet. 2019; 20 (11): 631-56. https://doi.org/10.1038/s41576-019-0150-2
- Efremova M., Teichmann S.A. Computational methods for single-cell omics across modalities. Nat. Methods. 2020; 17 (1): 14-7. https://doi.org/10.1038/s41592-019-0692-4
- Аксененко М.Б., Комина А.В., Палкина Н.В., Аверчук А.С., Рыбников Ю.А., Дыхно Ю.А., Рукша Т.Г. Транскриптомный анализ клеток меланомы, полученных из различных участков первичной опухоли. Сибирский онкологический журнал. 2018; 17 (4): 59-66. https://doi.org/10.21294/1814-4861-2018-17-4-59-66
- Hoek K.S., Eichhoff O.M., Schlegel N.C., Dö-bbeling U., Kobert N., Schaerer L., Hemmi S., Dummer R. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 2008; 68 (3): 650-6. https://doi.org/10.1158/0008-5472. CAN-07-2491
- Kim K., Park S., Park S.Y., Kim G., Park S.M., Cho J.W., Kim D.H., Park Y.M., Koh Y.W., Kim H.R., Ha S.J., Lee I. Single-cell transcriptome analysis reveals TOX as a promoting factor for T. cell exhaustion and a predictor for anti-PD-1 responses in human cancer. Genome Med. 2020; 12 (1): 22. https://doi.org/10.1186/s13073-020-00722-9
- Marie K.L., Sassano A., Yang H.H., Michalowski A.M., Michael H.T., Guo T., Tsai Y.C., Weissman A.M., Lee M.P., Jenkins L.M., Zaidi M.R., Perez-Guijarro E., Day C.P., Ylaya K., Hewitt S.M., Patel N.L., Arnheiter H., Davis S., Meltzer P.S., Merlino G., Mishra P.J. Melanoblast transcriptome analysis reveals pathways promoting melanoma metastasis. Nat. Commun. 2020; 11 (1): 333. https://doi.org/10.1038/s41467-019-14085-2
- Рукша Т.Г., Прохоренков В.И., Салмина А.Б., Петрова Л.Л., Труфанова Л.В. Современные представления об этиологии и патогенезе меланомы кожи. Вестник дерматологии и венерологии. 2007; 5: 22-8.
- Gyrylova S.N., Aksenenko M.B., Gavrilyuk D.V., Palkina N.V., Dyhno Y.A., Ruksha T.G., Artyukhov I.P. Melanoma incidence mortality rates and clinico-pathological types in the Siberian area of the Russian Federation. Asian Pac. J. Cancer Prev. 2014; 15 (5): 2201-4. https://doi.org/10.7314/ap-jcp.2014.15.5.2201
- Aksenenko M.B., Kirichenko A.K., Ruksha T.G. Russian study of morphological prognostic factors characterization in BRAF-mutant cutaneous melanoma. Pathol. Res. Pract. 2015; 211 (7): 521-7. https://doi.org/10.1016/j.prp.2015.03.005
- Chen W., Cheng P., Jiang J., Ren Y., Wu D., Xue D. Epigenomic and genomic analysis of transcriptome modulation in skin cutaneous melanoma. Aging (Albany NY). 2020; 12 (13): 12703-25. https://doi.org/10.18632/aging.103115
- Grasso C.S., Tsoi J., Onyshchenko M., Abril-Rodriguez G., Ross-Macdonald P., Wind-Rotolo M., Champhekar A., Medina E., Torrejon D.Y., Shin D.S., Tran P., Kim Y.J., Puig-Saus C., Campbell K., Vega-Crespo A., Quist M., Martignier C., Luke J.J., Wolchok J.D., Johnson D.B., Chmielowski B., Hodi F.S., Bhatia S., Sharfman W., Urba W.J., Slingluff C.L. Jr., Diab A., Haanen J.B.A.G., Algarra S.M., Pardoll D.M., Anagnostou V., Topalian S.L., Velculescu V.E., Speiser D.E., Kalbasi A., Ribas A. Conserved interferon-γ signaling drives clinical response to immune checkpoint blockade therapy in melanoma. Cancer Cell. 2020; 38 (4): 500-15. e3. https://doi.org/10.10Wj.ccell.2020.08.005
- Riaz N., Havel J.J., Makarov V., Desrichard A., Urba W.J., Sims J.S., Hodi F.S., Martin-Algarra S., Mandal R., Sharfman W.H., Bhatia S., Hwu W.J., Gajewski T.F., Slingluff C.L. Jr., Chowell D., Kendall S.M., Chang H., Shah R., Kuo F., Morris L.G.T., Sidhom J.W., Schneck J.P., Horak C.E., Weinhold N., Chan T.A. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017; 171 (4): 934-49. e16. https://doi.org/10.1016/j.cell.2017.09.028
- Pu M., Messer K., Davies S.R., Vickery T.L., Pittman E., Parker B.A., Ellis M.J., Flatt S.W., Marinac C.R., Nelson S.H., Mardis E.R., Pierce J.P., Natarajan L. Research-based PAM50 signature and long-term breast cancer survival. Breast Cancer Res. Treat. 2020; 179 (1): 197-206. https://doi.org/10.1007/s10549-019-05446-y
- Wang L., Wang Y., Su B., Yu P., He J., Meng L., Xiao Q., Sun J., Zhou K., Xue Y., Tan J. Transcriptome-wide analysis and modelling of prognostic alternative splicing signatures in invasive breast cancer: a prospective clinical study Sci. Rep. 2020; 10 (1): 16504. https://doi.org/10.1038/s41598-020-73700-1
- Lin Q.G., Liu W., Mo Y.Z., Han J., Guo Z.X., Zheng W., Wang J.W., Zou X.B., Li A.H., Han F. Development of prognostic index based on autophagy-related genes analysis in breast cancer. Aging (Albany NY). 2020; 12 (2): 1366-76. https://doi.org/10.18632/ag-ing.102687
- Bell R., Barraclough R., Vasieva O. Gene expression meta-analysis of potential metastatic breast cancer markers. Curr, Mol. Med. 2017; 17 (3): 200-10. https://doi.org/10.2174/1566524017666170807144946
- Рукша Т.Г., Аксененко М.Б., Климина Г.М., Новикова Л.В. Внеклеточный матрикс кожи: роль в развитии дерматологических заболеваний. Вестник дерматологии и венерологии. 2013; 89 (6): 32-9.
- Swindell W.R., Johnston A., Voorhees J.J., Elder J.T., Gudjonsson J.E. Dissecting the psoriasis transcriptome: inflammatory- and cytokine-driven gene expression in lesions from 163 patients. BMC Genomics. 2013; 14: 527. https://doi.org/10.1186/1471-2164-14-527
- Swindell W.R., Johnston A., Xing X., Voorhees J.J., Elder J.T., Gudjonsson J.E. Modulation of epidermal transcription circuits in psoriasis: new links between inflammation and hyperproliferation. PLoS One. 2013; 8 (11): e79253. https://doi.org/10.1371/journal.pone.0079253
- Zeng X., Zhao J., Wu X., Shi H., Liu W., Cui B., Yang L., Ding X., Song P. PageRank analysis reveals topologically expressed genes correspond to psoriasis and their functions are associated with apoptosis resistance. Mol. Med. Rep. 2016; 13 (5): 3969-76. https://doi.org/10.3892/mmr.2016.4999
- Lambert S., Hambro C.A., Johnston A., Stuart P.E., Tsoi L.C., Nair R.P., Elder J.T. Neutrophil extracellular traps induce human Th17 cells: effect of psoriasis-associated TRAF3IP2 genotype. J. Invest. Dermatol. 2019; 139 (6): 1245 53. https://doi.org/10.1016/jjid.2018.11.021
- Martel B.C., Litman T., Hald A., Norsgaard H., Lovato P., Dyring-Andersen B., Skov L., Thestrup-Pedersen K., Skov S., Skak K., Poulsen L.K. Distinct molecular signatures of mild extrinsic and intrinsic atopic dermatitis. Exp. Dermatol. 2016; 25 (6): 453-9. https://doi.org/10.1111/exd.12967
- Brown S.J. Molecular mechanisms in atopic eczema: insights gained from genetic studies. J. Pathol. 2017; 241 (2): 140-5. https://doi.org/10.1002/path.4810
- Tham E.H., Dyjack N., Kim B.E., Rios C., Seibold M.A., Leung D.Y.M., Goleva E. Expression and function of the ectopic olfactory receptor OR10G7 in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019; 143 (5): 1838-1848. e4. https://doi.org/10.1016/j.jaci.2018.11.004
- Meng J., Moriyama M., Feld M., Buddenkotte J., Buhl T., Szöllösi A., Zhang J., Miller P., Ghetti A., Fischer M., Reeh P.W., Shan C., Wang J., Steinhoff M. New mechanism underlying IL-31-induced atopic dermatitis. J. Allergy Clin. Immunol. 2018; 141 (5): 1677-89. e8. https://doi.org/10.10Wj.jaci.2017.12.1002
Дополнительные файлы
