Микробиота кишечника в патогенезе хронической сердечной недостаточности

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В настоящее время обсуждается, что микробиота желудочно-кишечного тракта и ее метаболиты влияют на течение хронической сердечной недостаточности (ХСН). Цель. Обобщить имеющиеся данные о роли микробиоты кишечника в патогенезе ХСН. Материал и методы. Проведен анализ основных зарубежных и отечественных источников по базам данных PubMed, MedLine, eLIBRARY за последние 20лет. Результаты. В ходе анализа опубликованных работ сопоставлены ключевые звенья патогенеза ХСН (дисбаланс нейрогуморальных систем, воспалительная теория, метаболические нарушения) и изменения, возникающие при нарушении состава микробиоты кишечника. Приведены результаты исследований положительных эффектов коррекции микробиоты, путем назначения антибиотиков, пробиотиков и пребиотиков на течение и прогноз при ХСН. Заключение. Общность в патогенезе ХСН (дисбаланс нейрогуморальных систем, воспалительная теория и метаболические нарушения) и изменений при нарушении микробиоты (в том числе, опосредованных микробными метаболитами и воспалительными цитокинами), положительные эффекты про- и пребиотиков как на микробный состав кишки, так и на течение и прогноз при ХСН, позволяют рассматривать микробиом как маркер и возможную мишень в терапии ХСН. Все выше названное диктует необходимость проведения дальнейших исследований в данной области.

Полный текст

Доступ закрыт

Об авторах

Мария Вадимовна Фадеева

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский Университет) Министерства здравоохранения Российской Федерации

Автор, ответственный за переписку.
Email: maria.fad@yandex.ru
аспирант кафедры пропедевтики внутренних болезней, гастроэнтерологии и гепатологии Российская Федерация, 119435, Москва, ул. Погодинская, д. 1, стр. 1

Манана Ревазовна Схиртладзе

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский Университет) Министерства здравоохранения Российской Федерации

Email: maria.fad@yandex.ru
кандидат медицинских наук, заведующая отделением кардиологии Клиники пропедевтики внутренних болезней, гастроэнтерологии и гепатологии им. В.Х. Василенко Российская Федерация, 119435, Москва, ул. Погодинская, д. 1, стр. 1

Оксана Юрьевна Зольникова

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский Университет) Министерства здравоохранения Российской Федерации

Email: ks.med@mail.ru
доктор медицинских наук, доцент кафедры пропедевтики внутренних болезней, гастроэнтерологии и гепатологии Российская Федерация, 119435, Москва, ул. Погодинская, д. 1, стр. 1

Владимир Трофимович Ивашкин

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» (Сеченовский Университет) Министерства здравоохранения Российской Федерации

Email: kont07@yandex.ru
доктор медицинских наук, профессор, академик РАН, заведующий кафедрой пропедевтики внутренних болезней, гастроэнтерологии и гепатологии Российская Федерация, 119435, Москва, ул. Погодинская, д. 1, стр. 1

Список литературы

  1. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472: 57-63. 290 https://doi.org/10.1038/nature09922.
  2. Luedde S.M., Winkler T, Heinsen F., Rühlemann M.S., Spehlmann M.E., Bajrovic A., Lieb W., Franke A., Ott S., Frey N. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Failure. 2017; 4: 282-90. https://doi.org/10.1002/ehf2.12155
  3. Kamo T., Akazawa H., Suda W. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS ONE. 2017; 12: 0174099. https://doi.org/10.1371/journal.pone.0174099.
  4. Katsimichas T., Ohtani T., Motooka D., Tsukamoto Y., Kioka H., Nakamoto K., Konishi S., Chimura M., Sengoku K., Miyawaki H., Sakaguchi T., Okumura R., Theofilis K., Iida T., Takeda K., Nakamura S., Sakata Y Non-Ischemic Heart Failure With Reduced Ejection Fraction Is Associated With Altered Intestinal Microbiota. Circ J. 2018; 82 (6): 1640-50. https://doi.org/10.1253/circj.CJ-17-1285.
  5. Kummen M., Mayerhofer C.C.K., Vestad B., Broch K., Awoyemi A., Storm-Larsen C., Ueland T., Yndestad A., Hov J.R., Trøseid M. Gut Microbiota Signature in Heart Failure Defined from Profiling of 2 Independent Cohorts. J. Am. Coll Cardiol. 2018; 71 (10): 1184-6. https://doi.org/10.10Wj.jacc.2017.12.057.
  6. Pasini E., Aquilani R., Testa C. Pathogenic gut flora in patients with chronic heart failure. J. JACC Heart Fail. 2016; 4: 220-7. https://doi.org/10.1016/jjchf.2015.10.009.
  7. Arpaia N., Campbell C., Fan X.l. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013; 504: 451-5. https://doi.org/10.1038/nature12726
  8. Kim O.Y., Monsel A., Bertrand M.S., Cavaillon J.M., Coriat P., Adib-Conquy M. Translocation of bacterial NOD2 agonist and its link with inflammation, Critical Care. 2009; 13 (4): 124. https://doi.org/10.1186/cc7980
  9. Niebauer J., Volk H., Kemp M. et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study Lancet. 1999; 353: 1838-42. https://doi.org/10.1016/S0140-6736(98)09286-1
  10. Sandek A., Bjarnason I., Volk H.D., Crane R., Meddings J.B., Niebauer J., Kalra P.R., Buhner S., Herrmann R., Springer J., Doehner W., Von Haehling S., Anker S.D., Rauchhaus M. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure.International Journal of Cardiology, 2010; 157 (1): 80-5. https://doi.org/10.1016/j.ijcard.2010.12.016
  11. Chen D., Assad-Kottner C., Orrego C., Torre-Amione G. Cytokines and acute heart failure. Crit Care Med. 2008; 36: 9-16. https://doi.org/10.1097/01.CCM.0000297160.48694.90
  12. Lauritano E.C., Valenza V, Sparano L., Scarpellini E., Gabrielli M., Cazzato A., Ferraro P.M., Gasbarrini A. Small intestinal bacterial overgrowth and intestinal permeability. Scand J. Gastroenterol. 2010; 45 (9): 1131-2. https://doi.org/10.3109/003655212010.485325
  13. Maslennikov R., Driga A., Ivashkin K., Ivashkin V. NT-proBNP as a biomarker for hyperdynamic circulation in decompensated cirrhosis. Gastroenterol Hepatol Bed Bench. 2018; 11 (4): 325-32. PMID: 30425812.
  14. Масленников Р.В., Татаркина М.А., Маевская М.В., Павлов Ч.С., Жаркова М.С., Ивашкин В.Т Влияние синдрома избыточного бактериального роста и системного воспаления на абдоминальную гемодинамику у больных циррозом печени. Российский журнал гастроэнтерологии, гепатологии колопроктологии. 2017; 27 (4): 52-61. https://doi.org/10.22416/1382-4376-2017-27-4-52-61
  15. Mollar A., Villanueva M.P., Nunez E., Carratal a.A., Mora F., Bayes-Genis A., Minguez M., Marrachelli V.G., Monleon D., Navarro D., Sanchis J., Nunez J. Hydrogen- and Methane-Based Breath Testing and Outcomes in Patients With Heart Failure. J. Card Fail. 2019; 25 (5): 319-27. https://doi.org/10.1016/j.cardfail.2018.10.004.
  16. Yokoyama T., Vaca L., Rossen R.D., Durante W., Hazarika P., Mann D.L. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J. Clin. Invest. 1993; 92: 2303-12. https://doi.org/10.1172/JCI116834.
  17. Sedej S., Schmidt A., Denegri M., Walther S., Matovina M., Arnstein G. et al. Subclinical abnormalities in sarcoplasmic reticulum Ca(2+) release promote eccentric myocardial remodeling and pump failure death in response to pressure overload. J. Am. Coll. Cardiol. 2014; 63: 1569-79. https://doi.org/10.1016/jjacc.2013.11.010
  18. Gurantz D., Cowling R.T., Varki N., Frikovsky E., Moore C.D., Greenberg B.H. IL-1beta and TNF-alpha upregulate angiotensin II type 1 (AT1) receptors on cardiac fibroblasts and are associated with increased AT1 density in the post-MI heart. J. Mol. Cell. Cardiol. 2005; 38: 505-15 https://doi.org/10.1016/j.yjmcc.2004.12.015.
  19. Spillmann F., Miteva K., Pieske B., Tschope C., Van Linthout S. High-density lipoproteins reduce endothelial-to-mesenchymal transition. Arterioscler Thromb Vasc Biol. 2015; 35: 1774-7. https://doi.org/10.1161/ATVBAHA.115.305887
  20. Chandrasekar B., Vemula K., Surabhi R.M., Li-Weber M., Owen-Schaub L.B., Jensen L.E. et al. Activation of intrinsic and extrinsic proapoptotic signaling pathways in interleukin-18-mediated human cardiac endothelial cell death. J. Biol. Chem. 2004; 279: 20221-33. https://doi.org/10.1074/jbc.M313980200
  21. Yu Y., Wei S.G., Weiss R.M., Felder R.B. TNF-a receptor 1 knockdown in the subfornical organ ameliorates sympathetic excitation and cardiac hemodynamics in heart failure rats. Am. J. Physiol. Heart Circ Physiol. 2017; 313 (4): 744-56. doi: 10.1152/ajpheart.00280.2017.
  22. Levin E.R., Gardner D.G., Samson W.K. Natriuretic peptides. N. Engl. J. Med. 1998; 339 (5): 321-8. https://doi.org/10.1056/NEJM199807303390507
  23. Schrier R.W., Abraham W.T. Hormones and hemodynamics in heart failure. N. Engl. J. Med. 1999; 341 (8): 577-85. https://doi.org/10.1056/NEJM199908193410806
  24. Mezzasoma L., Antognelli C., Talesa V.N. Atrial natriuretic peptide down-regulates LPS/ATP-mediated IL-1ß release by inhibiting NF-kB, NLRP3 inflammasome and caspase-1 activation in THP-1 cells. Immunol Res. 2016; 64 (1): 303-12. doi: 10.1007/s12026-015-8751-0.
  25. Bozkurt B., Mann D.L., Deswal A. Biomarkers of inflammation in heart failure. Heart Failure Reviews. 2010; 15 (4): 331-41. https://doi.org/10.1007/s10741-009-9140-3
  26. Yin W.-H., Chen J.-W, Jen H.-L. Independent prognostic value of elevated high-sensitivity C-reactive protein in chronic heart failure. American Heart J. 2004; 147 (5): 931-8. https://doi.org/10.10Wj.ahj.2003.11.021
  27. Rauchhaus M., Doehner W., Francis D. P Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation. 2000; 102 (25): 3060-7. https://doi.org/10.1161/01.cir.102.25.3060
  28. Treacy E.P., Akerman B.R., Chow L.M., Youil R., Bibeau C., Lin J., Bruce A.G., Knight M., Danks D.M., Cashman J.R., Forrest S.M. Mutations of the flavincontaining monooxygenase gene (FMO3) cause trimethylaminuria, a defect in detoxication. Human molecular genetics. 1998; 7: 839-45. https://doi.org/10.1093/hmg/7.5.839
  29. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., Dugar B. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472 (7341): 57-63. https://doi.org/10.1038/nature09922
  30. Tang W.H., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X. et al.Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013; 368 (17): 1575-84. https://doi.org/10.1056/NEJMoa1109400
  31. Bennett B.J., de Aguiar Vallim T.Q., Wang Z., Shih D.M., Meng Y, Gregory J., Allayee H., Lee R., Graham M., Crooke R., Edwards P.A., Hazen S.L., Lusis A.J. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013; 17 (1): 49-60. https://doi.org/10.10Wj.cmet.2012.12.011.
  32. Chen M.L., Zhu X.H., Ran L., Lang H.D., Yi L., Mi M.T. Trimethylamine-N-Oxide Induces Vascular Inflammation by Activating the NLRP3 Inflammasome Through the SIRT3-SOD2-mtROS Signaling Pathway. J. Am. Heart Assoc. 2017; 6 (9): e006347. 10.1161/JAHA.117.006347' target='_blank'>https://doi.org/doi: 10.1161/JAHA.117.006347.
  33. Boini K.M., Hussain T., Li P.L., Koka S. Trimethylamine-N-Oxide Instigates NLRP3 Inflammasome Activation and Endothelial Dysfunction. Cell Physiol Biochem. 2017; 44 (1): 152-62. https://doi.org/10.1159/000484623.
  34. Tang W.H., Wang Z., Fan Y, Levison B., Hazen J.E., Donahue L.M., Wu Y, Hazen S.L. Prognostic Value of Elevated Levels of Intestinal Microbe-Generated Metabolite Trimethylamine-N-oxide in Patients with Heart Failure: Refining the Gut Hypothesis. Am. Coll Cardiol. 2014; 64 (18): 1908-14. https://doi.org/10.1016/j.jacc.2014.02.617
  35. Organ C.L., Otsuka H., Bhushan S., Wang Z., Bradley J., Trivedi R., Polhemus D.J., Tang W.H., Wu Y, Hazen S.L., Lefer D.J. Choline Diet and Its Gut Microbe-Derived Metabolite, Trimethylamine N-Oxide, Exacerbate Pressure Overload-Induced Heart Failure. Circ Heart Fail. 2016; 9 (1): e002314. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002314.
  36. Huc T., Drapala A., Gawrys M., Konop M., Bielinska K., Zaorska E., Samborowska E., Wyczalkowska-Tomasik A., Pączek L., Dadlez M., Ufnal M. Chronic, low-dose TMAO treatment reduces diastolic dysfunction and heart fibrosis in hypertensive rats. Am. J. Physiol. Heart Circ Physiol. 2018; 315 (6): 1805-20. https://doi.org/10.1152/ajpheart.00536.2018
  37. Conraads V.M., Jorens P.G., De Clerck L.S., Van Saene H.K., Ieven M.M., Bosmans J.M., Schuerwegh A., Bridts C.H., Wuyts F., Stevens W.J., Anker S.D., Rauchhaus M., Vrints C.J. Selective intestinal decontamination in advanced chronic heart failure: a pilot trial. Eur. J. of Heart Failure. 2004; 6 (4): 483-91. https://doi.org/10.10Wj.ejheart.2003.12.004
  38. Ting W.J., Kuo W.W., Hsieh D.J., Yeh Y.L., Day C.H., Chen Y.H., Chen R.J., Padma V.V., Chen Y.H., Huang C.Y Heat Killed Lactobacillus reuteri GMNL-263 Reduces Fibrosis Effects on the Liver and Heart in High Fat Diet-Hamsters via TGF-ß Suppression.Int J. Mol. Sci. 2015; 16 (10): 25881-96. https://doi.org/10.3390/ijms161025881.
  39. Ting W.J., Kuo W.W., Kuo C.H., Yeh Y.L., Shen C.Y, Chen Y.H., Ho T.J., Viswanadha V.P., Chen Y.H., Huang C.Y. Supplementary heat-killed Lactobacillus reuteri GMNL-263 a meliorates hyperlipidaemic and cardiac apoptosis in high-fat diet-fed hamsters to maintain cardiovascular function. Br. J. Nutr. 2015; 114 (5): 706-12. https://doi.org/10.1017/S0007114515002469.
  40. Gan X.T., Ettinger G., Huang C.X., Burton J.P., Haist J.V., Rajapurohitam V, Sidaway J.E., Martin G., Gloor G.B., Swann J.R., Reid G., Karmazyn M. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 2014; 7 (3): 491-9. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000978.
  41. Lai C.H., Tsai C.C., Kuo W.W., Ho T.J., Day C.H., Pai Py, Chung L.C., Huang C.C., Wang H.F., Liao PH., Huang C.Y. Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats.Int J. Med Sci. 2016; 13 (4): 277-85. https://doi.org/10.7150/ijms.14769.
  42. Annelise C. Costanza Samuel D. Moscavitch, Hugo C.C. Faria Neto, Evandro T Mesquita. Probiotic therapy with Saccharomyces boulardii for heart failure patients: A randomized, double-blind, placebocontrolled pilot trial.International J. of Cardiology 2015; 179: 348-50. https://doi.org/10.1016/j.ijcard.2014.11.034
  43. Makarewicz-Wujec M., Parol G., Parzonko A., Koztowska-Wojciechowska M. Supplementation with omega-3 acids after myocardial infarction and modification of inflammatory markers in light of the patients' diet: a preliminary study Kardiol Pol. 2017; 75: 674-81. https://doi.org/10.5603/KPa2017.0072.
  44. Singh R.K., Chang H.W., Yan D., Lee K.M., Ucmak D., Wong K., Abrouk M., Farahnik B., Nakamura M., Zhu T.H., Bhutani T., Liao W. Influence of diet on the gut microbiome and implications for human health. J. Transl Med. 2017; 15 (1): 73. https://doi.org/10.1186/s12967-017-1175-y

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Эффекты компонентов клеточной стенки грамположительных и грамотрицательных бактерий кишки

Скачать (93KB)
3. Рис. 2. Изменения структуры и функции кишечной стенки при хронической сердечной недостаточности

Скачать (97KB)
4. Рис. 3. Нарушение барьерной функции кишки в воспалительной теории хронической сердечной недостаточности

Скачать (120KB)

© ИД "Русский врач", 2022

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах