Серотонин как модулятор процессов нейрогенеза при посттравматическом стрессовом расстройстве
- Авторы: Курилова Е.А.1, Сидорова М.В.1, Тучина О.П.1
-
Учреждения:
- ФГАОУ ВО «БФУ им. Иммануила Канта»
- Выпуск: Том 23, № 5 (2025)
- Страницы: 97-103
- Раздел: Обзоры
- URL: https://journals.eco-vector.com/1728-2918/article/view/696284
- DOI: https://doi.org/10.29296/24999490-2025-05-11
- ID: 696284
Цитировать
Полный текст
Аннотация
Целью настоящего обзора является обсуждение роли серотонина в процессах нейрогенеза в гиппокампе при посттравматическом стрессовом расстройстве. Поиск полнотекстовых материалов производился в базах данных Medline (PubMed) и Scopus за последние 15 лет.
Результаты: когнитивные нарушения, происходящие при посттравматическом стрессовом расстройстве (ПТСР), связаны со снижением уровня нейрогенеза в зубчатой извилине гиппокампа и нарушением работы моноаминергических систем мозга: катехоламинов и серотонина. Исследования на животных с использованием протокола Единого Пролонгированного Стресса (ЕПС) подтверждают ПТСР-подобную симптоматику, снижение уровня нейрогенеза и серотонина в гиппокампе, а использование моделей Tph1-/-, Tph2-/-, Tph1/Tph2-/-, TetO-shTph2 позволяет предположить, что серотонин не играет большой роли в поддержании базового уровня пролиферации нервных стволовых клеток (НСК), но необходим для модуляции нейрогенеза в ответ на изменившиеся условия (физическая активность, обогащенная среда). Модуляция нейрогенеза, вероятно, происходит посредством активации серотониновых рецепторов, расположенных как на НСК, так и на клетках глии, наибольший интерес из которых представляют 5-HTR1 и 5-HTR2.
Заключение: серотонин модулирует процессы нейрогенеза в гиппокампе в ответ на изменяющиеся условия среды посредством активации рецепторов 5-HTR1 и 5-HTR2.
Полный текст
Об авторах
Екатерина Александровна Курилова
ФГАОУ ВО «БФУ им. Иммануила Канта»
Автор, ответственный за переписку.
Email: ekaterinakuuurilova@gmail.com
аспирант, Образовательно-научный кластер «Институт медицины и наук о жизни (МЕДБИО)», Высшая школа живых систем, Лаборатория Синтетической Биологии
Россия, 236041, Калининград, ул. Университетская д. 2Мария Валерьевна Сидорова
ФГАОУ ВО «БФУ им. Иммануила Канта»
Email: sidorova.mari@list.ru
ORCID iD: 0000-0003-3347-2920
старший преподаватель, Образовательно-научный кластер «Институт медицины и наук о жизни (МЕДБИО)», Высшая школа живых систем, Лаборатория Синтетической Биологии
Россия, 236041, Калининград, ул. Университетская д. 2Оксана Павловна Тучина
ФГАОУ ВО «БФУ им. Иммануила Канта»
Email: otuchina@kantiana.ru
ORCID iD: 0000-0003-1480-1311
заведующая лабораторией синтетической биологии, Образовательно-научный кластер «Институт медицины и наук о жизни (МЕДБИО)», Высшая школа живых систем, Лаборатория Синтетической Биологии, кандидат биологических наук, доцент
Россия, 236041, Калининград, ул. Университетская д. 2Список литературы
- Reed G.M., First M.B., Billieux J., Cloitre M., Briken P., Achab S. et al. Emerging experience with selected new categories in the ICD-11: complex PTSD, prolonged grief disorder, gaming disorder, and compulsive sexual behaviour disorder. World Psychiatry. 2022; 21: 189–213.
- Brewin C.R., Cloitre M., Hyland P., Shevlin M., Maercker A., Bryant R.A. et al. A review of current evidence regarding the ICD-11 proposals for diagnosing PTSD and complex PTSD. Clin Psychol Rev. 2017; 58: 1–15.
- Besnard A., Sahay A. Adult Hippocampal Neurogenesis, Fear Generalization, and Stress. Neuropsychopharmacology. 2016; 41: 24–44.
- Lee H., Wang C., Deshmukh S.S., Knierim J.J. Neural Population Evidence of Functional Heterogeneity along the CA3 Transverse Axis: Pattern Completion versus Pattern Separation. Neuron. 2015; 87: 1093–105.
- Kurilova E.А., Sidorova M.V., Tuchina O.P. Single Prolonged Stress Decreases the Level of Adult Hippocampal Neurogenesis in C57BL/6, but Not in House Mice. Curr Issues Mol Biol. 2023; 45: 524–37.
- Levone B.R., Cryan J.F., O’Leary O.F. Role of adult hippocampal neurogenesis in stress resilience. Neurobiol Stress. 2015; 1: 147–55.
- Southwick S.M., Paige S., Morgan C.A. 3rd, Bremner J.D., Krystal J.H., Charney D.S. Neurotransmitter alterations in PTSD: catecholamines and serotonin. Semin Clin Neuropsychiatry. 1999; 4: 242–8.
- Tuchina O.P., Sidorova M.V., Turkin A.V., Shvaiko D.A., Shalaginova I.G., Vakolyuk I.A. Molecular mechanisms of neuroinflammation initiation and development in a model of post-traumatic stress disorder. Genes Cells. 2018; 13: 47–55.
- Hersey M., Reneaux M., Berger S.N., Mena S., Buchanan A.M., Ou Y., et al. A tale of two transmitters: serotonin and histamine as in vivo biomarkers of chronic stress in mice. J. Neuroinflammation. 2022; 19: 167.
- Davis L.L., Suris A., Lambert M.T., Heimberg C., Petty F. Post-traumatic stress disorder and serotonin: new directions for research and treatment. J. Psychiatry Neurosci. 1997; 22: 318–26.
- Williams T., Phillips N.J., Stein D.J., Ipser J.C. Pharmacotherapy for post traumatic stress disorder (PTSD). Cochrane Database Syst Rev. 2022; 3: CD002795.
- Akiki T.J., Abdallah C.G. Are There Effective Psychopharmacologic Treatments for PTSD? J. Clin. Psychiatry. 2018; 80. doi: 10.4088/JCP.18ac12473
- Lochmann D., Richardson T. Selective Serotonin Reuptake Inhibitors. Handb Exp. Pharmacol. 2019; 250: 135–44.
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5-TR. 2022.
- Verbitsky A., Dopfel D., Zhang N. Rodent models of post-traumatic stress disorder: behavioral assessment. Transl Psychiatry. 2020; 10: 132.
- Pynoos R.S., Ritzmann R.F., Steinberg A.M., Goenjian A., Prisecaru I. A behavioral animal model of posttraumatic stress disorder featuring repeated exposure to situational reminders. Biol Psychiatry. 1996; 39: 129–34.
- Mikics E., Baranyi J., Haller J. Rats exposed to traumatic stress bury unfamiliar objects--a novel measure of hyper-vigilance in PTSD models? Physiol Behav. 2008; 94: 341–8.
- Gould T.D. Mood and Anxiety Related Phenotypes in Mice: Characterization Using Behavioral Tests. Humana Press; 2011.
- Walf A.A., Frye C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007; 2: 322–8.
- Barnes C.A. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp Physiol Psychol. 1979; 93: 74–104.
- Rosenfeld C.S., Ferguson S.A. Barnes maze testing strategies with small and large rodent models. J. Vis Exp. 2014; e51194.
- Katz R.J., Roth K.A., Carroll B.J. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev. 1981; 5: 247–51.
- Liberzon I., Krstov M., Young E.A. Stress-restress: effects on ACTH and fast feedback. Psychoneuroendocrinology. 1997; 22: 443–53.
- Lee B., Choi G.M., Shim I., Lee H. Genistein Prevents Single Prolonged Stress-Induced Cognitive Impairment in a Post-Traumatic Stress Disorder Rat Model via Activation of the Serotonergic System. J Med Food. 2020; 23: 476–84.
- Deslauriers J., Powell S., Risbrough V.B. Immune signaling mechanisms of PTSD risk and symptom development: insights from animal models. Curr Opin Behav Sci. 2017; 14: 123–32.
- Nazzi S., Maddaloni G., Pratelli M., Pasqualetti M. Fluoxetine Induces Morphological Rearrangements of Serotonergic Fibers in the Hippocampus. ACS Chem Neurosci. 2019; 10: 3218–24.
- Nazzi S., Picchi M., Migliarini S., Maddaloni G., Barsotti N., Pasqualetti M. Reversible Morphological Remodeling of Prefrontal and Hippocampal Serotonergic Fibers by Fluoxetine. ACS Chem Neurosci. 2024; 15: 1702–11.
- Alenina N., Kikic D., Todiras M., Mosienko V., Qadri F., Plehm R., et al. Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc Natl Acad Sci U S A. 2009; 106: 10332–7.
- Van Lingen M., Sidorova M., Alenina N., Klempin F. Lack of Brain Serotonin Affects Feeding and Differentiation of Newborn Cells in the Adult Hypothalamus. Front Cell Dev Biol. 2019; 7: 65.
- Meng X., Grandjean J., Sbrini G., Schipper P., Hofwijks N., Calabrese F., et al. TPH2 knockout male rats are aggressive, show less anxiety, and exhibit an altered oxytocin system. bioRxiv. 2022. doi: 10.1101/2022.07.08.499134
- Klempin F., Beis D., Mosienko V., Kempermann G., Bader M., Alenina N. Serotonin is required for exercise-induced adult hippocampal neurogenesis. J. Neurosci. 2013; 33: 8270–5.
- Vinogradova A.V., Smirnova P.A., Yakovchuk Z.Y., Tuchina O.P. Ihe role of physical activity in the processes of neurogenesis in the hippocampus. Mol. Med. 2022; 20: 22–7.
- Vinogradova A., Sysova M., Smirnova P., Sidorova M., Turkin A., Kurilova E., et al. Enriched Environment Induces Sex-Specific Changes in the Adult Neurogenesis, Cytokine and miRNA Expression in Rat Hippocampus. Biomedicines. 2023; 11. doi: 10.3390/biomedicines11051341
- Savelieva K.V., Zhao S., Pogorelov V.M., Rajan I., Yang Q., Cullinan E., et al. Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS One. 2008; 3: e3301.
- Renard C.E., Dailly E., David D.J.P., Hascoet M., Bourin M. Monoamine metabolism changes following the mouse forced swimming test but not the tail suspension test. Fundam Clin Pharmacol. 2003; 17: 449–55.
- Sidorova M., Kronenberg G., Matthes S., Petermann M., Hellweg R., Tuchina O., et al. Enduring Effects of Conditional Brain Serotonin Knockdown, Followed by Recovery, on Adult Rat Neurogenesis and Behavior. Cells. 2021; 10. doi: 10.3390/cells10113240
- Singh S., Khanna D., Kalra S. Minocycline and Doxycycline: More Than Antibiotics. Curr Mol Pharmacol. 2021; 14: 1046–65.
- Henehan M., Montuno M., De Benedetto A. Doxycycline as an anti-inflammatory agent: updates in dermatology. J Eur Acad Dermatol Venereol. 2017; 31: 1800–8.
- Bastos G.N., Moriya T., Inui F., Katura T., Nakahata N. Involvement of cyclooxygenase-2 in lipopolysaccharide-induced impairment of the newborn cell survival in the adult mouse dentate gyrus. Neuroscience. 2008; 155: 454–62.
- Fujioka H., Akema T. Lipopolysaccharide acutely inhibits proliferation of neural precursor cells in the dentate gyrus in adult rats. Brain Res. 2010; 1352: 35–42.
- Tang M.-M., Lin W.-J., Pan Y.-Q., Guan X-T., Li Y.-C. Hippocampal neurogenesis dysfunction linked to depressive-like behaviors in a neuroinflammation induced model of depression. Physiol Behav. 2016; 161: 166–73.
- Higuchi Y., Arakawa H. Serotonergic mediation of the brain-wide neurogenesis: Region-dependent and receptor-type specific roles on neurogenic cellular transformation. Curr Res Neurobiol. 2023; 5: 100102.
- Туркин А.В., Сидорова М.В., Аленина Н., Тучина О.П., Клемпин Ф. “РОЛЬ СЕРОТОНИНА И МИКРОГЛИАЛЬНЫХ КЛЕТОК ГИППОКАМПА В ПЛАСТИЧНОСТИ МОЗГА.” Сборник трудов XXIV научной школы-конференции молодых ученых по физиологии и высшей нервной деятельности и нейрофизиологии. 2020. [Turkin, A.V., Sidorova M.V., Alenina N., Tuchina O.P., Klempin F. “THE ROLE OF SEROTONIN AND MICROGLIAL CELLS OF THE HIPPOCAMPUS IN BRAIN PLASTICITY.” Proceedings of the XXIV Scientific School-Conference of Young Scientists on Physiology and Higher Nervous Activity and Neurophysiology. 2020. https://doi.org/10.24412/CL-36001-2020-1-118-120 (in Russian)]
- Turkin A., Tuchina O., Klempin F. Microglia Function on Precursor Cells in the Adult Hippocampus and Their Responsiveness to Serotonin Signaling. Front Cell Dev Biol. 2021; 9: 665739.
- De las Casas-Engel M., Dominguez-Soto A., Sierra-Filardi E., Bragado R., Nieto C., Puig-Kroger A., et al. Serotonin skews human macrophage polarization through HTR2B and HTR7. J Immunol. 2013; 190: 2301–10.
- Fang Y., Ding X., Zhang Y., Cai L., Ge Y., Ma K., et al. Fluoxetine inhibited the activation of A1 reactive astrocyte in a mouse model of major depressive disorder through astrocytic 5-HTR/β-arrestin2 pathway. J Neuroinflammation. 2022; 19: 23.
- Toth M. 5-HT1A receptor knockout mouse as a genetic model of anxiety. Eur. J. Pharmacol. 2003; 463: 177–84.
- Groenink L., Pattij T., De Jongh R., Van der Gugten J., Oosting RS., Dirks A., et al. 5-HT1A receptor knockout mice and mice overexpressing corticotropin-releasing hormone in models of anxiety. Eur J. Pharmacol. 2003; 463: 185–97.
- Staes N., Sherwood C.C., Freeman H., Brosnan S.F., Schapiro S.J., Hopkins W.D., et al. Serotonin Receptor 1A Variation Is Associated with Anxiety and Agonistic Behavior in Chimpanzees. Mol Biol Evol. 2019; 36: 1418–29.
- Yu X.-D., Zhu Y., Sun Q.-X., Deng F., Wan J., Zheng D., et al. Distinct serotonergic pathways to the amygdala underlie separate behavioral features of anxiety. Nat Neurosci. 2022; 25: 1651–63.
- Wu M.V., Hen R. Functional dissociation of adult-born neurons along the dorsoventral axis of the dentate gyrus. Hippocampus. 2014 ;24: 751–61.
- Zhou Q.-G., Lee D., Ro E.J., Suh H. Regional-specific effect of fluoxetine on rapidly dividing progenitors along the dorsoventral axis of the hippocampus. Sci Rep. 2016; 6: 35572.
- Karayol R., Medrihan L., Warner-Schmidt J.L., Fait B.W., Rao M.N., Holzner E.B., et al. Serotonin receptor 4 in the hippocampus modulates mood and anxiety. Mol. Psychiatry. 2021; 26: 2334–49.
- Owens M.J., Knight D.L., Nemeroff C.B. Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry. 2001; 50: 345–50.
- Holmes A., Yang R.J., Murphy D.L., Crawley J.N. Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology. 2002; 27: 914–23.
- Klempin F., Babu H., De Pietri Tonelli D., Alarcon E., Fabel K., Kempermann G. Oppositional effects of serotonin receptors 5-HT1a, 2, and 2c in the regulation of adult hippocampal neurogenesis. Front Mol Neurosci. 2010; 3. doi: 10.3389/fnmol.2010.00014
- Banasr M., Hery M., Printemps R., Daszuta A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology. 2004; 29: 450–60.
- Kondo M., Koyama Y., Nakamura Y., Shimada S. A novel 5HT3 receptor-IGF1 mechanism distinct from SSRI-induced antidepressant effects. Mol. Psychiatry. 2018; 23: 833–42.
- Mendez-David I., David D.J., Darcet F., Wu M.V., Kerdine-Römer S., Gardier A.M., et al. Rapid anxiolytic effects of a 5-HT₄ receptor agonist are mediated by a neurogenesis-independent mechanism. Neuropsychopharmacology. 2014; 39: 1366–78.
- De Foubert G., O’Neill M.J., Zetterström T.S.C. Acute onset by 5-HT(6)-receptor activation on rat brain brain-derived neurotrophic factor and activity-regulated cytoskeletal-associated protein mRNA expression. Neuroscience. 2007; 147: 778–85.
Дополнительные файлы

