Atopic dermatitis: a modern view of intercellular interactions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Atopic dermatitis (AD) is characterized by a violation of the epidermal barrier dysfunction. This review examines the work of the authors who describe mutations in the filaggrin gene as predisposing factors for the development of AD and describe the dysfunction of the epidermal barrier as a causal mechanism. In recent years, signaling molecules have been widely studied as a key factor in the development of a particular pathology, including signaling molecules of intercellular contacts that play an important role in the pathogenesis of AD. Claudins are the main proteins that make up dense compounds. The analyzed articles in which proteins with dense compounds of claudin-1,7, claudin-10, occludin. It determines the density of these contacts and plays an important role in providing the barrier function. Evaluation of the expression level for further correction of proteins with dense compounds may be an important therapeutic target for targeted therapy of various diseases, including AD.

全文:

受限制的访问

作者简介

Ekaterina Iskra

Saint-Petersburg State Pediatric Medical University

Email: e.iskra.doc@mail.ru
postgraduate student of the Department of Pathological Anatomy with the course of Forensic Medicine

Alexander Iskra

Saint-Petersburg State Pediatric Medical University

Email: neonatol@list.ru
postgraduate student of the Department of Rehabilitation of FP and DPO

Vktoriya Polyakova

Saint-Petersburg State Pediatric Medical University

Email: vopol@yandex.ru
Head of the Research Center

Ruslan Nasirov

Saint-Petersburg State Pediatric Medical University

Email: rrmd99@mail.ru
Vice-Rectorfor Research, Head of the Department of Pathological Anatomy with the Course of Forensic Medicine

参考

  1. Weidinger S., Novak N. Atopic dermatitis. Lancet. 2016. 12; 387:1109-1122. https://doi.org/10.1016/s0140-6736(15)00149-X.
  2. David Boothe W, Tarbox J.A., Tarbox M.B. Atopic Dermatitis: Pathophysiology. Adv Exp Med Biol. 2017; 1027: 21-37. https://doi.org/10.1007/978-3-319-64804-0_3.
  3. Kubo A., Nagao K., Amagai M. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J. Clin. Invest. 2012; 122: 440-7. https://doi.org/10.1172/JCI57416.
  4. Guttman-Yassky E., Waldman A., Ahluwalia J., Ong P.Y., Eichenfield L.F. Atopic dermatitis: pathogenesis. Semin Cutan Med Surg. 2017; 36: 100-3. https://10.12788/j.sder.2017.036.
  5. Milatz S., Breiderhoff T. One gene, two paracellular ion channels-claudin-10 in the kidney. Pflugers Arch. 2017; 469: 115-21. https://doi.org/10.1007/s00424-016-1921-7.
  6. Trubitt R.T., Rabeneck D.B., Bujak J.K., Bossus M.C., Madsen S.S., Tipsmark C.K. Transepithelial resistance and claudin expression in trout RTgill-W1 cell line: effects of osmoregulatory hormones. Comp Biochem Physiol A Mol. Integr Physiol. 2015; 182: 45-52. https://doi.org/10.1016/j.cbpa.2014.12.005.
  7. Milatz S. New claudinopathy based on Claudin-10 mutations. Int J. Mol Sci. 2019; 20: 5396. https://doi.org/10.3390/ijms20215396.
  8. Olinger E., Houillier P., Devuyst O. Claudins: a tale of interactions in the thick ascending limb. Kidney Int. 2018; 93: 535-7. https://doi.org/10.1016/j.kint.2017.09.032.
  9. Volksdorf T., Heilmann J., Eming S.A., Schawjinski K., Zorn-Kruppa M., Ueck C., Vidal-Y-Sy S., Windhorst S., Jücker M., Moll I., Brandner J.M. Tight Junction Proteins Claudin-1 and Occludin Are Important for Cutaneous Wound Healing. Am. J. Pathol. 2017; 187: 1301-12. https://doi.org/10.1016/j.ajpath.2017.02.006.
  10. Bhat A.A., Syed N., Therachiyil L., Nisar S., Hashem S., Macha M.A., Yadav S.K., Krishnankutty R., Muralitharan S., Al-Naemi H., Bagga P., Reddy R., Dhawan P., Akobeng A., Uddin S., Frenneaux M.P., El-Rifai W., Haris M. Claudin-1, A Double- Edged Sword in Cancer. Int J. Mol Sci. 2020; 21: 569. https://doi.org/10.3390/ijms21020569
  11. Ouban A. Claudin-1 role in colon cancer: An update and a review. Histol Histopathol. 2018; 33: 1013-9. https://doi.org/10.14670/HH-11-980.
  12. Gonzalez-Mariscal L., Namorado Mdel C., Martin D., Sierra G., Reyes J.L. The tight junction proteins claudin-7 and - 8 display a different subcellular localization at Henle’s loops and collecting ducts of rabbit kidney. Nephrol Dial Transplant. 2006; 21: 2391-8. https://doi.org/10.1093/ndt/gfl255.
  13. Clarke T.B., Francella N., Huegel A., Weiser J.N. Invasive bacterial pathogens exploit TLR-mediated downregulation of tight junction components to facilitate translocation across the epithelium. Cell Host Microbe. 2011; 9: 404-14. https://doi.org/10.1016/j.chom.2011.04.012.
  14. Curry J.N., Tokuda S., McAnulty P., Yu A.S.L. Combinatorial expression of claudins in the proximal renal tubule and its functional consequences. Am J Physiol Renal Physiol. 2020; 318: 1138-46. https://doi.org/10.1152/ajprenal.00057.2019.
  15. Inai T., Sengoku A., Guan X., Hirose E., Iida H., Shibata Y. Heterogeneity in expression and subcellular localization of tight junction proteins, claudin-10 and -15, examined by RT-PCR and immunofluorescence microscopy. Arch Histol Cytol. 2005; 68: 349-60. https://doi.org/10.1679/aohc.68.349.
  16. Inai T., Kamimura T., Hirose E., Iida H., Shibata Y. The protoplasmic or exoplasmic face association of tight junction particles cannot predict paracellular permeability or heterotypic claudin compatibility. Eur J. Cell Biol. 2010; 89: 547-56. https://doi.org/10.1016/j.ejcb.2010.01.003.
  17. Furuse M., Hirase T., Itoh M., Nagafuchi A., Yonemura S., Tsukita S., Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 1993; 123: 1777-88. https://doi.org/10.1083/jcb.123.6.1777.
  18. Ando-Akatsuka Y., Saitou M., Hirase T., Kishi M., Sakakibara A., Itoh M., Yonemura S., Furuse M., Tsukita S. Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and ratkangaroo homologues. J. Cell Biol. 1996; 133: 43-7. https://doi.org/10.1083/jcb.133.1.43.
  19. Feldman G.J., Mullin J.M., Ryan M.P. Occludin: structure, function and regulation. Adv Drug Deliv Rev. 2005; 57: 883-917. https://doi.org/10.1016/j.addr.2005.01.009.
  20. Richter J.F., Hildner M., Schmauder R., Turner J.R., Schumann M., Reiche J. Occludin knock-down is not sufficient to induce transepithelial macromolecule passage. Tissue Barriers. 2019; 7: 1612661. https://doi.org/10.1080/21688370.2019.1608759.
  21. Eilken H.M., Diéguez-Hurtado R., Schmidt I., Nakayama M., Jeong H.W., Arf H., Adams S., Ferrara N., Adams R.H. Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1. Nat Commun. 2017; 8: 1574. https://doi.org/10.1038/s41467-017-01738-3.
  22. Brigidi G.S., Bamji S.X. Cadherin-catenin adhesion complexes at the synapse. Curr Opin Neurobiol. 2011; 21: 208-14. https://doi.org/10.1016/j.conb.2010.12.004
  23. Senger D.R., Galli S.J., Dvorak A.M., Perruzzi C.A., Harvey V.S., Dvorak H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983; 219: 983-5. https://doi.org/10.1126/science.6823562.
  24. Onder T.T., Gupta P.B., Mani S.A., Yang J., Lander E.S., Weinberg R.A. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008; 68: 3645-54. https://doi.org/10.1158/0008-5472.
  25. van Roy F. Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nat Rev Cancer. 2014; 14: 121-34. https://doi.org/0.1038/nrc3647.
  26. Barratt S.L., Flower V.A., Pauling J.D., Millar A.B. VEGF (Vascular Endothelial Growth Factor) and Fibrotic Lung Disease. Int J. Mol Sci. 2018; 19: 1269. https://doi.org/10.3390/ijms19051269.
  27. Hoeben A., Landuyt B., Highley M.S., Wildiers H., Van Oosterom A.T., De Bruijn E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 2004; 56: 549-80. https://doi.org/10.1124/pr.56.4.3.
  28. Veeravagu A., Hsu A.R., Cai W., Hou L.C., Tse V.C., Chen X. Vascular endothelial growth factor and vascular endothelial growth factor receptor inhibitors as anti-angiogenic agents in cancer therapy. Recent Pat Anticancer Drug Discov. 2007; 2: 59-71. https://doi.org/10.2174/157489207779561426.
  29. Apte R.S., Chen D.S., Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019; 176: 1248-64. https://doi.org/10.1016/j.cell.2019.01.021.
  30. Melincovici C.S., Boşca A.B., Şuşman S., Mărginean M., Mihu C., Istrate M., Moldovan I.M., Roman A.L., Mihu C.M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J. Morphol Embryol. 2018; 59: 455-67.
  31. Guttman-Yassky E., Waldman A., Ahluwalia J., Ong P.Y., Eichenfield L.F. Atopic dermatitis: pathogenesis. Semin Cutan Med Surg. 2017; 36: 100-3. https://doi.org/10.12788/j.sder.2017.036.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2021