The Role of P2X7 Receptors in the Pathogenesis of Depression and Autism Spectrum Disorders

封面
  • 作者: Panyukov V.A.1, Zakharova V.A.1,2, Malinovskaya N.A.1,2, Shogenov Z.I.3, Nicheporenko Y.A.4, Shikhmagomedova A.R.5
  • 隶属关系:
    1. Federal State Budgetary Educational Institution of Higher Education “Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky” of the Ministry of Health of the Russian Federation
    2. Siberian Federal University
    3. Federal State Budgetary Educational Institution of Higher Education “Kabardino-Balkarian State University named after H.M. Berbekov”
    4. Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation
    5. Federal State Budgetary Educational Institution of Higher Education «Dagestan State Medical University» of the Ministry of Health of the Russian Federation
  • 期: 卷 23, 编号 4 (2025)
  • 页面: 64-74
  • 栏目: Reviews
  • URL: https://journals.eco-vector.com/1728-2918/article/view/689189
  • DOI: https://doi.org/10.29296/24999490-2025-04-10
  • ID: 689189

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. Purinergic signaling pathways in brain cells can play an important role both in physiological conditions and in depression and autism spectrum disorders.

The purpose of this literature review was a systematic analysis of information in the modern scientific literature devoted to the role of the P2X7 subtype of purinergic receptors in the pathogenesis of depression and autism spectrum disorders.

Material and methods. The literature review includes data from foreign and domestic articles published in PubMed and eLibrary over the past 23 years, which are devoted to purinergic signals associated with P2X7 receptors, in health and in depression, autism spectrum disorders.

Results. P2X7 receptors are unique representatives of the P2X receptor family, normally involved in the regulation of immune processes, maintenance of cellular homeostasis and neuronal plasticity, promoting the balance between inflammatory reactions and recovery mechanisms. Hyperactivation of this type of receptors under stress or inflammation leads to a cascade of pathological processes, including neuroinflammation, disruption of synaptic plasticity and cotransmitter properties, development of oxidative stress, which play a key role in the development of the considered mental disorders, which is associated with the activation of the P2X7-NLRP3-cytokines IL-1βand IL-18 pathway. The established patterns confirm the pathogenetic role of P2X7 receptors in the development of depression and autism spectrum disorders.

Conclusion. The presented analysis demonstrates a significant pathogenetic role of P2X7 receptors in the development of depression and autism spectrum disorders. An interesting perspective is the potential therapeutic modulation of P2X7 activity and the study of models for translational research. Future studies should focus on the long-term safety and efficacy of P2X7 inhibitors, as well as their interaction with other approaches, which may significantly improve the quality of life of patients with autism.

全文:

受限制的访问

作者简介

Vladislav Panyukov

Federal State Budgetary Educational Institution of Higher Education “Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky” of the Ministry of Health of the Russian Federation

编辑信件的主要联系方式.
Email: panyuckovvladislav@yandex.ru
ORCID iD: 0000-0003-2079-4525
SPIN 代码: 9702-9645

Postgraduate Student, Assistant of the Department of Biological Chemistry with courses in medical, pharmaceutical and toxicological chemistry

俄罗斯联邦, Partizana Zheleznyaka St., 1, Krasnoyarsk, 660022

Valeria Zakharova

Federal State Budgetary Educational Institution of Higher Education “Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky” of the Ministry of Health of the Russian Federation; Siberian Federal University

Email: valeria.zaxarova.2019@mail.ru
ORCID iD: 0009-0007-0691-868X

Senior Laboratory Assistant of the Department of Biological Chemistry with courses of medical, pharmaceutical and toxicological chemistry

俄罗斯联邦, Partizana Zheleznyaka St., 1, Krasnoyarsk, 660022; Svobodny Ave., 79, Krasnoyarsk, 660041

Natalia Malinovskaya

Federal State Budgetary Educational Institution of Higher Education “Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky” of the Ministry of Health of the Russian Federation; Siberian Federal University

Email: malinovskaya-na@mail.ru
ORCID iD: 0000-0002-0033-3804
SPIN 代码: 3474-5990

Doctor of Medical Sciences, Head of the Department of Biological Chemistry with Courses in Medical, Pharmaceutical and Toxicological Chemistry

俄罗斯联邦, Partizana Zheleznyaka St., 1, Krasnoyarsk, 660022; Svobodny Ave., 79, Krasnoyarsk, 660041

Zaur Shogenov

Federal State Budgetary Educational Institution of Higher Education “Kabardino-Balkarian State University named after H.M. Berbekov”

Email: zaur.shogenov.2002@mail.ru
ORCID iD: 0009-0001-5143-3733

5thyear student

俄罗斯联邦, Chernyshevsky Street, 173, Nalchik, 360004, Kabardino-Balkarian Republic

Yulia Nicheporenko

Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation

Email: nicheporenko.yulia@yandex.ru
ORCID iD: 0009-0008-7259-1432

5thyear student

俄罗斯联邦, Ostrovityanova Street, 1, Building 6, Moscow, 117513, Russian Federation

Aina Shikhmagomedova

Federal State Budgetary Educational Institution of Higher Education «Dagestan State Medical University» of the Ministry of Health of the Russian Federation

Email: ayna.shikhmagomedova@mail.ru
ORCID iD: 0009-0007-6472-3362

6thyear student

俄罗斯联邦, Lenin Square, 1, Makhachkala, Republic of Dagestan, 367000

参考

  1. Won E., Na K.S., Kim Y.K. Associations between Melatonin, Neuroinflammation, and Brain Alterations in Depression. Int J Mol Sci. 2021; 23 (1): 305. doi: 10.3390/ijms23010305
  2. Guerreiro S., Privat A.L., Bressac L., Toulorge D. CD38 in Neurodegeneration and Neuroinflammation Cells. 2020; 9 (2): 471. doi: 10.3390/cells9020471
  3. Серебряная Н.Б., Фомичева Е.Е., Якуцени П.П. Пуринергическая регуляция нейровоспаления при черепно-мозговой травме. Успехи физиологических наук. 2021; 52 (3): 24–40. [Serebryanaya N.B., Fomicheva E.E., Yakutseni P.P. Purinergic regulation of neuroinflammation in traumatic brain injury. Uspehi fiziologicheskih nauk. 2021; 52 (3): 24–40. doi: 10.31857/S0301179821030073 (In Russian)]
  4. Ralevic V. History of Geoff Burnstock’s research on P2 receptors. Biochem Pharmacol. 2021; 187: 114358. doi: 10.1016/j.bcp.2020.114358
  5. North R.A. Molecular physiology of P2X receptors. Physiol Rev. 2002; 82 (4): 1013–67. doi: 10.1152/physrev.00015.2002
  6. North R.A., Barnard E.A. Nucleotide receptors. Curr. Opin. Neurobiol. 1997; 7 (3): 346–57. doi: 10.1016/s0959-4388(97)80062-1
  7. Nückel H., Frey UH, Dürig J, Dührsen U, Siffert W. 1513A/C polymorphism in the P2X7 receptor gene in chronic lymphocytic leukemia: absence of correlation with clinical outcome. Eur J. Haematol. 2004; 72 (4): 259–63. doi: 10.1111/j.0902-4441.2003.00210.x
  8. Al-Aqtash R., Collier D.M. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism. Channels (Austin). 2024; 18 (1): 2355150. doi: 10.1080/19336950.2024.2355150
  9. Kopp R., Krautloher A., Ramirez-Fernández A., Nicke A. P2X7 Interactions and Signaling – Making Head or Tail of It. Front. Mol Neurosci. 2019; 12: 183. doi: 10.3389/fnmol.2019.00183
  10. Kawamura H., Aswad F., Minagawa M., Malone K., Kaslow H., Koch-Nolte F., Schott W.H. et al. P2X7 receptor-dependent and -independent T cell death is induced by nicotinamide adenine dinucleotide. J. Immunol. 2005; 174 (4): 1971–9. doi: 10.4049/jimmunol.174.4.1971
  11. Dunning K., Martz A., Peralta F.A., Cevoli F., Boué-Grabot E., Compan V., Gautherat F. et al. P2X7 Receptors and TMEM16 Channels Are Functionally Coupled with Implications for Macropore Formation and Current Facilitation. Int J. Mol. Sci. 2021; 22 (12): 6542. doi: 10.3390/ijms22126542
  12. Liang X., Samways D.S., Wolf K., Bowles E.A., Richards J.P., Bruno J., Dutertre S. et al. Quantifying Ca2+current and permeability in ATP-gated P2X7 receptors. J. Biol Chem. 2015; 290 (12): 7930–42. doi: 10.1074/jbc.M114.627810
  13. Richter K., Asci N., Singh V.K., Yakoob S.H., Meixner M., Zakrzewicz A., Liese J. et al. Activation of endothelial NO synthase and P2X7 receptor modification mediates the cholinergic control of ATP-induced interleukin-1βrelease by mononuclear phagocytes. Front Immunol. 2023; 14: 1140592. doi: 10.3389/fimmu.2023.1140592
  14. Habermacher C., Dunning K., Chataigneau T., Grutter T. Molecular structure and function of P2X receptors. Neuropharmacology. 2016; 104: 18–30. doi: 10.1016/j.neuropharm.2015.07.032
  15. Di Virgilio F., Vultaggio-Poma V., Tarantini M., Giuliani A.L. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther. 2024; 262: 108700. doi: 10.1016/j.pharmthera.2024.108700
  16. Hesse J., Steckel B., Dieterich P., Aydin S., Deussen A., Schrader J. Intercellular crosstalk shapes purinergic metabolism and signaling in cancer cells. Cell Rep. 2024; 43 (1): 113643. doi: 10.1016/j.celrep.2023.113643
  17. Du Y., Cao Y., Song W., Wang X., Yu Q., Peng X., Zhao R. Role of the P2X7 receptor in breast cancer progression. Purinergic Signal. 2024. doi: 10.1007/s11302-024-10039-6
  18. Ribeiro D.E., Roncalho A.L., Glaser T., Ulrich H., Wegener G., Joca S. P2X7 Receptor Signaling in Stress and Depression. Int J. Mol. Sci. 2019; 20 (11): 2778. doi: 10.3390/ijms20112778
  19. Burnstock G. Introduction to Purinergic Signalling in the Brain. Adv. Exp. Med Biol. 2020; 1202: 1–12. doi: 10.1007/978-3-030-30651-9_1
  20. Jimenez-Mateos E.M., Smith J., Nicke A., Engel T. Regulation of P2X7 receptor expression and function in the brain. Brain Res Bull. 2019; 151: 153–63. doi: 10.1016/j.brainresbull.2018.12.008
  21. Bhattacharya A. Recent Advances in CNS P2X7 Physiology and Pharmacology: Focus on Neuropsychiatric Disorders. Front Pharmacol. 2018; 9: 30. doi: 10.3389/fphar.2018.00030
  22. Mou Y., Sun C., Wei S., Song X., Wang H., Wang Y., Ren C. et al. P2X7 receptor of olfactory bulb microglia plays a pathogenic role in stress-related depression in mice with allergic rhinitis. Neurobiol Dis. 2024; 192: 106432. doi: 10.1016/j.nbd.2024.106432
  23. Wang D., Wang H., Gao H., Zhang H., Zhang H., Wang Q., Sun Z. et al. P2X7 receptor mediates NLRP3 inflammasome activation in depression and diabetes. Cell Biosci. 2020; 10: 28. doi: 10.1186/s13578-020-00388-1
  24. Кувачева Н.В., Моргун А.В., Хилажева Е.Д., Малиновская Н.А., Горина Я.В., Пожиленкова Е.А., Фролова О.В. и др. Формирование инфламмасом: новые механизмы регуляции межклеточных взаимодействий и секреторной активности клеток. Сибирское медицинское обозрение. 2013; 5 (83): 3–10. [Kuvacheva N.V., Morgun A.V., Hilazheva E.D., Malinovskay N.A., Gorina Y.V., Pozhilenkova E.A., Frolova O.V. et al. Inflammasomes forming: new mechanisms of intercellular interactions regulation and secretory activity of the cells. Sibirskoe medicinskoe obozrenie. 2013; 5 (83): 3–10 (In Russian)]
  25. Zhan T., Tang S., Du J., Liu J., Yu B., Yang Y., Xie Y. et al. Implication of lncRNA MSTRG.81401 in Hippocampal Pyroptosis Induced by P2X7 Receptor in Type 2 Diabetic Rats with Neuropathic Pain Combined with Depression. Int J. Mol. Sci. 2024; 25 (2): 1186. doi: 10.3390/ijms25021186
  26. Akcay E., Karatas H. P2X7 receptors from the perspective of NLRP3 inflammasome pathway in depression: Potential role of cannabidiol. Brain Behav Immun Health. 2024; 41: 100853. doi: 10.1016/j.bbih.2024.100853
  27. Huang S., Dong W., Lin X., Xu K., Li K., Xiong S., Wang Z. et al. Disruption of the Na+/K+-ATPase-purinergic P2X7 receptor complex in microglia promotes stress-induced anxiety. Immunity. 2024; 57 (3): 495–512.e11. doi: 10.1016/j.immuni.2024.01.018
  28. Laskaris L.E., Di Biase M.A., Everall I., Chana G., Christopoulos A., Skafidas E., Cropley V.L. et al. Microglial activation and progressive brain changes in schizophrenia. Br J. Pharmacol. 2016; 173 (4): 666–80. doi: 10.1111/bph.13364
  29. Alves M., de Diego-Garcia L., Engel T. Analyzing the Role of the P2X7 Receptor in Epilepsy. Methods Mol. Biol. 2022; 2510: 367–87. doi: 10.1007/978-1-0716-2384-8_21
  30. Diniz C.R.A.F., Casarotto P.C., Resstel L., Joca S.R.L. Beyond good and evil: A putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment. Neurosci Biobehav Rev. 2018; 90: 70–83. doi: 10.1016/j.neubiorev.2018.04.001
  31. Styles M., Alsharshani D., Samara M., Alsharshani M., Khattab A., Qoronfleh M.W., Al-Dewik N.I. Risk factors, diagnosis, prognosis and treatment of autism. Front Biosci. (Landmark Ed). 2020; 25 (9): 1682–717. doi: 10.2741/4873
  32. Bai D., Yip B.H.K., Windham G.C., Sourander A., Francis R., Yoffe R., Glasson E. et al. Association of Genetic and Environmental Factors With Autism in a 5-Country Cohort. JAMA Psychiatry. 2019; 76 (10): 1035–43. doi: 10.1001/jamapsychiatry.2019.1411
  33. Wang M., Zhang H., Liang J., Huang J., Chen N. Exercise suppresses neuroinflammation for alleviating Alzheimer’s disease. J. Neuroinflammation. 2023; 20 (1): 76. doi: 10.1186/s12974-023-02753-6
  34. Babiec L., Wilkaniec A., Adamczyk A. Prenatal exposure to valproic acid induces alterations in the expression and activity of purinergic receptors in the embryonic rat brain. Folia Neuropathol. 2022; 60 (4): 390–402. doi: 10.5114/fn.2022.123999
  35. Johnson A.J., Shankland E., Richards T., Corrigan N., Shusterman D., Edden R., Estes A. et al. Relationships between GABA, glutamate, and GABA/glutamate and social and olfactory processing in children with autism spectrum disorder. Psychiatry Res Neuroimaging. 2023; 336: 111745. doi: 10.1016/j.pscychresns.2023.111745
  36. Suprunowicz M., Tomaszek N., Urbaniak A., Zackiewicz K., Modzelewski S., Waszkiewicz N. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients. 2024; 16 (4): 549. doi: 10.3390/nu16040549
  37. Qi W., Jin X., Guan W. Purinergic P2X7 receptor as a potential therapeutic target in depression. Biochem Pharmacol. 2024; 219: 115959. doi: 10.1016/j.bcp.2023.115959
  38. Urbina-Treviño L., von Mücke-Heim I.A., Deussing J.M. P2X7 Receptor-Related Genetic Mouse Models – Tools for Translational Research in Psychiatry. Front Neural Circuits. 2022; 16: 876304. doi: 10.3389/fncir.2022.876304
  39. Illes P., Verkhratsky A., Tang Y. Pathological ATPergic Signaling in Major Depression and Bipolar Disorder. Front Mol Neurosci. 2020; 12: 331. doi: 10.3389/fnmol.2019.00331
  40. Andrejew R., Oliveira-Giacomelli Á., Ribeiro DE, Lima L, Jesus CHA, Joca SRL, Ulrich H. The P2X7 Receptor in the MDA-MB-231 Breast Cancer Cell Line Promotes Migration and Invasion. Int J Mol Sci. 2023; 24 (17): 13123. doi: 10.3390/ijms241713123

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1.Classical classification scheme of nucleotide receptors (left) and reclassification (right) of purinergic P2 receptors. The figure was made by the authors of the article during the analysis of literature sources [1–5]

下载 (297KB)
3. Fig. 2.The structure of the subunits of the P2X receptors (left, general structure plan) and the P2X7 receptor (right, general structure plan and display of the location in the cell membrane). The figure was made by the authors of the article during the analysis of literature sources [5–9]

下载 (189KB)
4. Fig. 3.Formation of a low-conductivity cation-selective channel (left, subunit trimer shown) or a high-conductivity non-selective pore (right, subunit tetramer shown) from P2X receptor subunits. The figure was made by the authors of the article during the analysis of literature sources [5, 8, 9, 13]

下载 (95KB)

版权所有 © Russkiy Vrach Publishing House, 2025