Reflux nephropathy in children: early diagnosis and monitoring


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Vesicoureteral reflux (VUR) is the most common type of obstructive uropathy in children. Reflux nephropathy (RN) is one of the most common complications of VUR that inevitably leads to chronic kidney disease. Patients with end-stage kidney disease require costly treatment, and the only way to cure them is kidney transplantation. A timely institution of renoprotective therapy is a key factor helping to preserve the function of the native kidneys. Hence, it is necessary to devise new highly sensitive and minimally invasive methods for early diagnosis of RN. The purpose of this article is to review the molecular mechanisms of initiation and progression of kidney fibrosis and the opportunities of instrumental and non-instrumental methods for its diagnosis. Special attention is paid to highly specific and highly sensitive non-invasive methods for the detection of minimal changes in the renal parenchyma. The authors discuss the promising biomarkers for the diagnosis and prediction of RN.

Full Text

Restricted Access

About the authors

O. L Morozova

Sechenov First Moscow State Medical University

Email: morozova_ol@list.ru
Dr.Med.Sci., Professor of the Department of Pathophysiology

D. A Morozov

Sechenov First Moscow State Medical University

Email: damorozov@list.ru
Dr.Med.Sci., Professor, Head of the Department of Pediatric Surgery, Urology and Andrology

D. Y Lakomova

Saratov State Medical University n. a. V.I. Razumovsky

Email: dlmedic@mail.ru
Ph.D., Assistant Professor of the Department of Pediatric Surgery

V. V Iakovlev

Sechenov First Moscow State Medical University

Email: vladislav.iak@gmail.com

V. V Rostovskaya

Sechenov First Moscow State Medical University

Email: rostovskaya_vera@mail.ru
Dr.Med.Sci., Head of the Department of Pediatric Surgery, Urology and Andrology

I. A Budnik

Sechenov First Moscow State Medical University

Email: budnik.ivan@gmail.com
Ph.D., Associate Professor of the Department of Pathophysiology

L. D Maltseva

Sechenov First Moscow State Medical University

Email: lamapost@mail.ru
Ph.D., Associate Professor of the Department of Pathophysiology

References

  1. Zieg J. Vesicoureteric reflux in children: many questions still unanswered. Cas Lek Cesk. 2016;155(3):31-34.
  2. Roic G., Roic A.C., Palcic I., Grmoja T., Batos A.T. Contrast enhanced voiding urosonography (cevus) in the diagnosis of vesicoureteral reflux. Lijec Vjesn. 2016;138(1-2):39-46.
  3. Mattoo T.K. Vesicoureteral reflux and reflux nephropathy. Adv Chronic Kidney Dis. 2011;18(5):348-354.
  4. Nickavar A., Hajizadeh N., Lahouti Harahdashti A. Clinical Course and Effective Factors of Primary Vesicoureteral Reflux. Acta Med. Iran. 2015;53(6):376-379.
  5. Parmaksiz G., Noyan A., Dursun H., Ince E., Anarat R., Cengiz N. Role of new biomarkers for predicting renal scarring in vesicoureteral reflux: NGAL, KIM-1, and L-FABP. Pediatr. Nephrol. Berl. Ger. 2016;31(1):97-103.
  6. Fillion M-L., Watt C.L., Gupta I.R. Vesicoureteric reflux and reflux nephropathy: from mouse models to childhood disease. Pediatr. Nephrol. Berl. Ger. 2014;29(4):757-766.
  7. Chertin B., Abu Arafeh W., Kocherov S. Endoscopic correction of complex cases of vesicoureteral reflux utilizing Vantris as a new non-biodegradable tissue-augmenting substance. Pediatr. Surg. Int. 2014;30(4):445-448.
  8. Wheeler D., Vimalachandra D., Hodson E.M., Roy L.P., Smith G., Craig J.C. Antibiotics and surgery for vesicoureteric reflux: a meta-analysis of randomised controlled trials. Arch. Dis. Child. 2003;88(8):688-694.
  9. Bowen S.E., Watt C.L., Murawski I.J., Gupta I.R., Abraham S.N. Interplay between vesicoureteric reflux and kidney infection in the development of reflux nephropathy in mice. Dis. Model. Mech. 2013;6(4):934-941.
  10. Зорин И.В. Прогнозирование инициации интерстициального повреждения почек у детей с ПМР. Бюллетень Оренбургского Научного Центра УРО РАН. 2014;(2):1
  11. Hunziker M., Colhoun E., Puri P. Prevalence and predictors of renal functional abnormalities of high grade vesicoureteral reflux. J. Urol. 2013;190(4 Suppl.):1490-1494.
  12. Altobelli E., Gerocarni Nappo S., Guidotti M., Caione P. Vesicoureteral reflux in pediatric age: where are we today? Urologia. 2014;81(2):76-87.
  13. Saleh Farghaly H.R., Mohamed Sayed M.H. Technetium-99m dimercaptosuccinic acid scan in evaluation of renal cortical scarring: Is it mandatory to do single photon emission computerized tomography? Indian J. Nucl. Med. IJNM Off J. Soc. Nucl. Med. India. 2015;30(1):26-30.
  14. Ai J., Nie J., He J., Guo Q., Li M., Lei Y., Liu Y., Zhou Z., Zhu F., Liang M., Cheng Y., Hou F.F. GQ5 Hinders Renal Fibrosis in Obstructive Nephropathy by Selectively Inhibiting TGF-ß-Induced Smad3 Phosphorylation. J. Am. Soc. Nephrol. JASN. 2015;26(8):1827-1838.
  15. dos Santos Junior ACS, de Miranda D.M., Simoes e Silva A.C. Congenital anomalies of the kidney and urinary tract: an embryogenetic review. Birth. Defects Res. Part C. Embryo Today Rev. 2014;102(4):374-381.
  16. Ninoa F., Ilaria M., Noviello C., Santoro L., Rätsch I.M., Martino A., Cobellis G. Genetics ofVesicoureteral Reflux. Curr. Genomics. 2016;17(1):70-79.
  17. Chung A.C.K., Lan H.Y. Chemokines in renal injury. J. Am. Soc. Nephrol. JASN. 2011;22(5):802-809.
  18. Glybochko P.V., Morozov D.A., Svistunov A.A., Morozova O.L., Zaharova N.B., SHahpazyan N.K. Citokinovyj profil’ krovi i mochi u detej s obstruktivnymi uropatiyami. Kurskij nauchno-prakticheskij vestnik «CHelovek i ego zdarov’e». 2010;(2):52-57. (Глыбочко П.В., Морозов Д.А., Свистунов А.А., Морозова О.Л., Захарова Н.Б., Шахпазян Н.К. Цитокиновый профиль крови и мочи у детей с обструктивными уропатиями. Курский научно-практический вестник «Человек и его здаровье». 2010;(2):52-57).
  19. Yuan A., Lee Y., Choi U., Moeckel G., Karihaloo A. Chemokine receptor Cxcr4 contributes to kidney fibrosis via multiple effectors. Am. J. Physiol. Renal. Physiol. 2015;308(5):F459-472.
  20. Mack M., Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int. 2015;87(2):297-307.
  21. Klingberg F., Hinz B., White E.S. The myofibroblast matrix: implications for tissue repair and fibrosis. J. Pathol. 2013;229(2):298-309.
  22. Kriz W., Kaissling B., Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J. Clin. Invest. 2011;121(2):468-474.
  23. Hashimoto N., Phan S.H., Imaizumi K., Matsuo M., Nakashima H., Kawabe T., Shimokata K., Hasegawa Y. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol. 2010;43(2):161-172.
  24. Wu C-F., Chiang W-C.,Lai C-F., Chang F-C., Chen Y-T., Chou Y-H., Wu T-H., Linn G.R., Ling H., Wu K-D., Tsai T-J., Chen Y-M., Duffield J.S., Lin S-L. Transforming growth factor ß-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am. J. Pathol. 2013;182(1):118-131.
  25. Niedermeier M., Reich B., Rodriguez Gomez M., Denzel A., Schmidbauer K., Göbel N., Talke Y., Schweda F., Mack M. CD4+ T. cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc. Natl. Acad. Sci. U. S. A. 2009;106(42):17892-17897.
  26. Genovese F., Manresa A.A., Leeming D.J., Karsdal M.A., Boor P. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Repair. 2014;7(1):4.
  27. Duffield J.S. Macrophages and immunologic inflammation of the kidney. Semin Nephrol. 2010;30(3):234-54.
  28. Kitamoto K., Machida Y., Uchida J., Izumi Y., Shiota M., Nakao T., Iwao H., Yukimura T., Nakatani T., Miura K., Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy. J. Pharmacol. Sci. 2009;111(3):285-292.
  29. Wang Y., Wang Y., Cao Q., Cai Q., Zheng G., Lee V.W.S., Zheng D., Li X., Tan T.K., Harris D.C.H. By homing to the kidney, activated macrophages potently exacerbate renal injury. Am. J. Pathol. 2008;172(6):1491-1499.
  30. Mulay S.R., Linkermann A., Anders H.-J. Necroinflammation in Kidney Disease. J. Am. Soc. Nephrol. JASN. 2016;27(1):27-39.
  31. Ricardo S.D., van Goor H., Eddy A.A. Macrophage diversity in renal injury and repair. J. Clin. Invest. 2008;118(11):3522-3530.
  32. Cucak H., Nielsen Fink L., Hojgaard Pedersen M., Rosendahl A. Enalapril treatment increases T. cell number and promotes polarization towards M1-like macrophages locally in diabetic nephropathy. In.t Immunopharmacol. 2015;25(1):30-42.
  33. Roth K.S., Koo H.P., Spotti-wood S.E., Chan J.C.M. Obstructive uropathy: an important cause of chronic renal failure in children. Clin. Pediatr. (Phila). 2002;41(5):309-314.
  34. Becker A.M. Postnatal evaluation of infants with an abnormal antenatal renal sonogram. Curr Opin Pediatr. 2009;21(2):207-213.
  35. Gallo F., Schenone M., Giberti C. Ureteropelvic junction obstruction: which is the best treatment today? J. Laparoendosc. Adv. Surg. Tech. A. 2009;19(5):657-662.
  36. Kawauchi A., Yamao Y., Ukimura O., Kamoi K., Soh J., Miki T. Evaluation of reflux kidney using renal resistive index. J. Urol. 2001;165(6 Pt 1):2010-2012.
  37. Rossleigh M.A. Scintigraphic imaging in renal infections. Q. J. Nucl. Med. Mol. Imaging. Off Publ. Ital. Assoc. Nucl. Med. AIMN Int. Assoc. Radiopharmacol. IAR Sect. Soc. Of. 2009;53(1):72-77.
  38. Wongbencharat K., Tongpenyai Y., Na-Rungsri K. Renal ultrasound and DMSA screening for high-grade vesicoureteral reflux. Pediatr. Int. Off J. Jpn. Pediatr. Soc. 2016;58(3):214-218.
  39. Shaikh N., Hoberman A., Keren R., Ivanova A., Ziessman H.A., Cui G., Mattoo T.K., Bhatnagar S., Nadkarni M.D., Moxey-Mims M., Primack W.A. Utility of sedation for young children undergoing dimercaptosuccinic acid renal scans. Pediatr. Radiol. 2016;46(11):1573-1578.
  40. Bush N.C., Keays M., Adams C., Mizener K., Pritzker K., Smith W., Traylor J., Villanueva C., Snodgrass W.T. Renal damage detected by DMSA, despite normal renal ultrasound, in children with febrile UTI. J. Pediatr. Urol. 2015;11(3):126.e1-7.
  41. Snodgrass W.T., Shah A., Yang M., Kwon J., Villanueva C., Traylor J., Pritzker K., Nakonezny P.A., Haley R.W., Bush N.C. Prevalence and risk factors for renal scars in children with febrile UTI and/or VUR: a crosssectional observational study of 565 consecutive patients. J. Pediatr. Urol. 2013;9(6 Pt A):856-863.
  42. Garcta-Nieto V., Gonzdlez-Cerrato S.,Luis-Yanes M.I., Monge-Zamorano M., Reyes-Milldn B. Decreased concentrating capacity in children with febrile urinary tract infection and normal 99mTc-dimercaptosuccinic acid scan: does medullonephritis exist? World J. Pediatr. WJP. 2014; 10(2):133-137.
  43. Cerwinka W.H., Grattan-Smith J.D., Jones R.A., Haber M., Little S.B., Blews D.E., Williams J.P., Kirsch A.J. Comparison of magnetic resonance urography to dimercaptosuccinic acid scan for the identification of renal parenchyma defects in children with vesicoureteral reflux. J. Pediatr. Urol. 2014;10(2):344-351.
  44. Зайкова Н.М. Факторы риска и патогенетические механизмы формирования и прогрессирования рефлюкс-нефропатии у детей. Российский Вестник перинатологии и педиатрии. 2008;53(1):63-70
  45. Wolf G. Angiotensin II as a mediator of tubulointerstitial injury. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2000;15(Suppl. 6):61-63.
  46. Sato A., Tabata M., Hayashi K., Saruta T. Effects of the angiotensin II type 1 receptor antagonist candesartan, compared with angiotensin-converting enzyme inhibitors, on the urinary excretion of albumin and type IV collagen in patients with diabetic nephropathy. Clin. Exp. Nephrol. 2003;7(3):215-220.
  47. Takamatsu N., Abe H., Tominaga T., Nakahara K., Ito Y., Okumoto Y., Kim J., Kitakaze M., Doi T. Risk factors for chronic kidney disease in Japan: a community-based study. BMC Nephrol. 2009;10:34.
  48. Sthaneshwar P., Chan S.-P. Urinary type IV collagen levels in diabetes mellitus. Malays J. Pathol. 2010;32(1):43-47.
  49. Böttinger E.P., Bitzer M. TGF-beta signaling in renal disease. J. Am. Soc. Nephrol. JASN. 2002;13(10):2600-210.
  50. Zavadil J., Böttinger E.P. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005;24(37):5764-5774.
  51. Lin S.-L., Kisseleva T., Brenner D.A., Duffield J.S. Pericytes and Perivascular Fibroblasts Are the Primary Source of Collagen-Producing Cells in Obstructive Fibrosis of the Kidney. Am. J. Pathol. 2008;173(6):1617-1627.
  52. Chung A.C.K., Huang X.R., Zhou L., Heuchel R., Lai K.N., Lan H.Y. Disruption of the Smad 7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice. Nephrol. Dial. Transplant. Off Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2009;24(5):1443-1454.
  53. Choudhury D., Tuncel M., Levi M. Diabetic nephropathy - a multifaceted target of new therapies. Discov. Med. 2010;10(54):406-415.
  54. Xu J., Lamouille S., Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156-172.
  55. Musial K., Bargenda A., Zwolinska D. Urine matrix metalloproteinases and their extracellular inducer EMMPRIN in children with chronic kidney disease. Ren Fail. 2015;37(6):980-984.
  56. Kim S.M., Jang H.R., Lee Y-.J., Lee J.E., Huh W.S., Kim D.J., Oh H.Y., Kim Y-G. Urinary angiotensinogen levels reflect the severity of renal histopathology in patients with chronic kidney disease. Clin. Nephrol. 2011;76(2):117-123.
  57. Haller H., Bertram A., Nadrowitz F., Menne J. Monocyte chemoattractant protein-1 and the kidney. Curr. Opin. Nephrol. Hypertens. 2016;25(1):42-49.
  58. Stroo I., Claessen N., Teske G.J.D., Butter L.M., Florquin S., Leemans J.C. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury. PloS. One. 2015;10(4):e0123203.
  59. Morozov D., Morozova O., Budnik I., Pervouchine D., Pimenova E., Zakharova N. Urinary cytokines as markers of latent inflammation in children with chronic pyelonephritis and anorectal malformations. J. Pediatr. Urol. 2016;12(3):153.e1-6.
  60. Lee E.Y., Chung C.H., Khoury C.C., Yeo T.K., Pyagay P.E., Wang A., Chen S. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-beta, increases podocyte motility and albumin permeability. Am. J. Physiol. Renal Physiol. 2009;297(1):F85-94.
  61. Anders H-J., Vielhauer V., Schlöndorff D. Chemokines and chemokine receptors are involved in the resolution or progression of renal disease. Kidney Int. 2003;63(2):401-415.
  62. Wang X., Lieske J.C., Alexander M.P., Jayachandran M., Denic A., Mathew J., Lerman L.O., Kremers W.K., Larson J.J., Rule A.D. Tubulointerstitial Fibrosis of Living Donor Kidneys Associates with Urinary Monocyte Chemoattractant Protein 1. Am. J. Nephrol. 2016;43(6):454-459.
  63. Zhu Q., Qi X., Wu Y., Wang K. Clinical study of total glucosides of paeony for the treatment of diabetic kidney disease in patients with diabetes mellitus. Int. Urol. Nephrol. 2016;48(11):1873-1880.
  64. Kang Y.S., Lee M.H., Song H.K., Kim J.E., Ghee J.Y., Cha J.J., Lee J.E., Kim H. W., Han J. Y., Cha D.R. Chronic Administration of Visfatin Ameliorated Diabetic Nephropathy in Type 2 Diabetic Mice. Kidney Blood Press Res. 2016;41(3):311-324.
  65. Бобкова И.Н., Чеботарёва И.В. и соавт. Определение экскреции с мочой моноцитарного хемотаксического протеина-1 (MCP-1) и трансформирующего фактора роста-b1 (TGF-b1) - неинвазивный метод оценки тубулоинтерстициального фиброза при хроническом гломерулонефрите. 2006;10(№ 4):19-25
  66. Morii T., Fujita H., Narita T., Shimotomai T., Fujishima H., Yoshioka N., Imai H., Kakei M., Ito S. Association of monocyte chemoattractant protein-1 with renal tubular damage in diabetic nephropathy. J. Diabetes Complications. 2003;17(1):11-15.
  67. Karakus S., Oktar T., Kucukgergin C., Kalelioglu I., Seckin S., Atar A., Ander H., Ziylan O. Urinary IP-10, MCP-1, NGAL, Cystatin-C, and KIM-1 Levels in Prenatally Diagnosed Unilateral Hydronephrosis: The Search for an Ideal Biomarker. Urology. 2016;87:185-192.
  68. Harvey T.W., Engel J.E., Chade A.R. Vascular Endothelial Growth Factor and Podocyte Protection in Chronic Hypoxia: Effects of Endothelin-A Receptor Antagonism. Am. J. Nephrol. 2016;43(2):74-84.
  69. Caron J., Michel P-A., Dussaule J-C., Chatziantoniou C., Ronco P., Boffa J.-J. Extracorporeal shock wave therapy does not improve hypertensive nephropathy. Physiol. Rep. 2016;4(11).
  70. Namikoshi T., Satoh M., Horike H., Fujimoto S., Arakawa S., Sasaki T., Kashihara N. Implication of peritubular capillary loss and altered expression of vascular endothelial growth factor in IgA nephropathy. Nephron Physiol. 2006;102(1):9-16.
  71. Eardley K.S., Kubal C., Zehnder D., Quinkler M., Lepenies J., Savage C.O., Howie A.J., Kaur K., Cooper M.S., Adu D., Cockwell P. The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int. 2008;74(4):495-504.
  72. Konda R., Sato H., Sakai K., Abe Y., Fujioka T. Urinary excretion of vascular endothelial growth factor is increased in children with reflux nephropathy. Nephron Clin. Pract. 2004;98(3):73-78.
  73. Grenda R., Wühl E., Litwin M., Janas R., Sladowska J., Arbeiter K., Berg U., Caldas-Afonso A., Fischbach M., Mehls O., Sallay P., Schaefer F., ESCAPE Trial group. Urinary excretion of endothelin-1 (ET-1), transforming growth factor- beta1 (TGF- beta1) and vascular endothelial growth factor (VEGF165) in paediatric chronic kidney diseases: results of the ESCAPE trial. Nephrol. Dial. Transplant. Off Publ. Eur. Dial. Transpl. Assoc. Eur Ren Assoc. 2007;22(12):3487-3494.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies