Cytogenetic, kariopathological and morphological abnormalities of spermatozoa and urothelial cells in human granulocytic anaplasmosis depending on polymorphism of the gene of DNA ligase IV

  • Authors: Ilyinskikh N.N1,2,3, Ilyinskikh E.N1,2, Subbotin A.M4, Kostromeeva M.S1,2
  • Affiliations:
    1. Federal State Autonomous Educational Institution of Higher Education «National Research Tomsk State University» of the Ministry of Education and Science of the Russian Federation
    2. Federal State Budgetary Educational Institution of Higher Education «Siberian State Medical University» of the Ministry of Healthcare of the Russian Federation
    3. Federal State Educational Institution of Higher Education «Tomsk State Pedagogical University» of the Ministry of Education and Science of the Russian Federation
    4. Federal State Budgetary Institution of Science «Tyumen Scientific Center» of Russian Academy of Sciences
  • Issue: No 1 (2019)
  • Pages: 84-89
  • Section: Articles
  • URL: https://journals.eco-vector.com/1728-2985/article/view/296463
  • DOI: https://doi.org/10.18565/urology.2019.16.84-89
  • ID: 296463

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim: to assess the role of human granulocytic anaplasmosis (HGA) caused by Anaplasma phagocytophilum in the induction of cytogenetic damage of spermatozoa and karyopathological abnormalities of urothelial cells depending on the polymorphism of the gene of enzyme, DNA ligase IV. Material and methods. A total of 129 male patients with HGA and 84 otherwise healthy donors were examined. The samples of both semen and urothelial cells were obtained from each individuals for microscopic analysis. The diagnosis was confirmed by cytological (microscopic) method, enzyme immunoassay and polymerase chain reaction (PCR). An analysis of the frequencies of damaged spermatozoa and urothelial cells in all participants was carried out. In addition, a molecular cytogenetic study of spermatozoa by fluorescent in situ hybridization (FISH) was carried out using an AneuVysion multicolour for chromosomes 18 and 21 («Abbott», USA) to determine the frequency of aneuploidy in spermatozoa. The level of DNA fragmentation was studied by SCD (Sperm Chromatin Dispertion Test) using a commercial Halosperm kit («Halotech DNA», Spain). Results. The cytological analysis revealed the significant increase in the proportion of spermatozoa with cytogenetic abnormalities and urothelial cells with karyopathological damage in the HGA patients. The most significant damage to nuclear structures of cells was determined in the patients with Ile/Ile genotype. The significant effects of HGA in DNA damage and cytogenetic abnormalities in patients were verified by the increased frequency of spermatozoa with DNA fragmentation, monosomy and disomy in 21 and 18 chromosomes, as well as the appearance oi urothelial cells with karyopathological abnormalities. In addition, the increased frequencies of pathospermia with pathological abnormalities of head, neck and tail of spermatozoa in HGA patients were found. Conclusion. According to our results, the cytological analysis in the patients with HGA demonstrated the significant increase in the frequencies of spermatozoa with head, neck and tail defects and DNA fragmentation, monosomy and trisomy of the 18th and 21st chromosomes, as well as the increase in the frequencies of urothelial cells with karyopathological abnormalities. The genetic polymorphism of the effects of HGA was revealed, and the most significant cytogenetical damage was found in the patients carrying the Ile/Ile genotype of the LIG4 Thr9Ile gene.

Full Text

Restricted Access

About the authors

N. N Ilyinskikh

Federal State Autonomous Educational Institution of Higher Education «National Research Tomsk State University» of the Ministry of Education and Science of the Russian Federation; Federal State Budgetary Educational Institution of Higher Education «Siberian State Medical University» of the Ministry of Healthcare of the Russian Federation; Federal State Educational Institution of Higher Education «Tomsk State Pedagogical University» of the Ministry of Education and Science of the Russian Federation

Email: nauka-tomsk@yandex.ru
Doctor of Biological Science, Professor at the Department of Biology and Genetics; Professor of Department of Ecology, Nature Management and Environmental Engineering; Professor of Department of Biology and Ecology

E. N Ilyinskikh

Federal State Autonomous Educational Institution of Higher Education «National Research Tomsk State University» of the Ministry of Education and Science of the Russian Federation; Federal State Budgetary Educational Institution of Higher Education «Siberian State Medical University» of the Ministry of Healthcare of the Russian Federation

Email: infconf2009@mail.ru
MD, Professor at the Department of Infectious Diseases and Epidemiology; Professor of Department of Ecology, Nature Management and Environmental Engineering

A. M Subbotin

Federal State Budgetary Institution of Science «Tyumen Scientific Center» of Russian Academy of Sciences

Email: subbotin.prion@yandex.ru
PhD in Biology, leading researcher

M. S Kostromeeva

Federal State Autonomous Educational Institution of Higher Education «National Research Tomsk State University» of the Ministry of Education and Science of the Russian Federation; Federal State Budgetary Educational Institution of Higher Education «Siberian State Medical University» of the Ministry of Healthcare of the Russian Federation

Email: nauka-tomsk@yandex.ru
PhD student at the Department of Ecology, Nature Management and Environmental Engineering; assistant at the Department of Biology and Genetics

References

  1. Афанасьева М.В., Воробьева Н.Н., Коренберг Э.И., Фризен В.И., Манокина Т.Е. Гранулоцитарный анаплазмоз человека: особенности клинических проявлений в России. Инфекционные болезни. 2006;4(2): 24-28
  2. Логинов С.И. Микроядерный анализ эритроцитов при различных функциональных состояниях организма крупного рогатого скота. Сибирский вестник сельскохозяйственной науки. 2003;3(149):73-76
  3. McEntee M. Reproductive Pathology oi Domestic Mammals. San Diego (Caliiornia): Academic Press, Inc. 1991;401 p.
  4. M’ghirbi Y., Beji M., Oporto B., Khrouf F., Hurtado A., Bouattour A. Anaplasma marginale and A. phagocytophilum in cattle in Tunisia. Parasit Vectors. 2016;9(1):556. https:// doi.org/10.1186/s13071-016-1840-7
  5. Синицкий М.Ю., Волобаев В.П., Асанов М.А. Частота микроядер в лимфоцитах шахтеров с различными полиморфными вариантами генов репарации двойных разрывов ДНК. Экологическая генетика. 2015;13(4):30-33
  6. Liu S., Liu X., Kamdar R.P., Wanotayan R., Sharma M.K., Adachi N., Matsumoto Y. C-Terminal region of DNA ligase IV drives XRCC4/ DNA ligase IV complex to chromatin. Biochem Biophys Res Commun. 2013;439(2):173-178. https://doi: 10.1016/j.bbrc.2013.08.068
  7. Fenech M., Kirsch-Volders M., Natarajan A.T., Surralles J., Crott J.W., Parry J., Norppa H., Eastmond D.A., Tucker J.D., Thomas P. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 2011;26(1):125- 132. https://doi: 10.1093/mutage/geq052
  8. World Health Organization. WHO laboratory manual for the examination and processing of human semen, 5th ed. Geneva: World Health Organization. 2010; 271 p.
  9. Check J.H., Adelson H.G., Schubert B.R., Bollendorf A. Evaluation ofsperm morphology using Kruger’s strict criteria. Arch. Androl. 1992;28(1):15- 17.
  10. Ильинских Н.Н., Ксенц А.С., Ильинских Е.Н., Манских В.Н., Васильев С.А., Ильинских И.Н. Микроядерный анализ в оценке цитогенетической нестабильности. Томск: Издательство Томский государственный педагогический университет. 2011; 234 с.
  11. Боровиков В.П. Популярное введение в современный анализ данных в системе STATISTICA. М.: Горячая линия Телеком. 2013; 288 c.
  12. Gardner R.J.M., Sutherland G.R. Chromosome abnormalities and genetic counseling. 3rd ed. New York: Oxford University Press, Inc. 2005; 600 p.
  13. Ward W.S. Function of sperm chromatin structural elements in fertilization and development. Mol. Hum. Reprod. 2010; 16( 1) :30-36. https://doi: 10.1093/molehr/gap080
  14. Мейер А.В., Дружинин В.Г., Ларионов А.В., Толочко Т.А. Генотоксические и цитотоксические эффекты в буккальных эпителиоцитах детей, проживающих в экологически различающихся районах Кузбасса. Цитология. 2010;52(4):305-310
  15. Ченцов Ю.С. Введение в клеточную биологию. М.: Академкнига. 2004;284 с.
  16. Rex A.S., Aagaard J., Fedder J. DNA fragmentation in spermatozoa: a historical review. Andrology. 2017;5(4):622-630. https://doi: 10.1111/ andr.12381
  17. McAuliffe M.E., Williams P.L., Korrick S.A., Dadd R., Marchetti F., Martenies S.E., Perry M.J. Human sperm sex chromosome disomy and sperm DNA damage assessed by the neutral comet assay. Hum. Reprod. 2014;29(10):2148-2155. 10.1093/humrep/deu177' target='_blank'>https://doi: 10.1093/humrep/deu177
  18. Jeng H.A., Pan C.H., Chao M.R., Lin W.Y. Sperm DNA oxidative damage and DNA adducts. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015;794:75-82. https://doi: 10.1016/j.mrgentox.2015.09.002
  19. Ligor M., Olszowy P., Buszewski B. Application of medical and analytical methods in Lyme borreliosis monitoring. Anal. Bioanal. Chem. 2012;402(7):2233-2248. https://doi: 10.1007/s00216-011-5451-z
  20. Ilyinskikh N., Ilyinskikh I., Ilyinskikh E. Infectious mutagenesis (cytogenetic effects in human and animal cells as well as immunoreactivity induced by viruses, bacteria and helminthes). Saarbrucken (Deutschland): LAP Lambert Academic Publishing. 2012; 216 p.
  21. Cicare J., Caille A., Zumoffen C., Ghersevich S., Bahamondes L., Munuce M.J. In vitro incubation of human spermatozoa promotes reactive oxygen species generation and DNA fragmentation. Andrologia. 2015;47(8):861- 866. https://doi: 10.1111/and.12337.
  22. Abdelbaki S.A., Sabry J.H., Al-Adl A.M., Sabry H.H. The impact of coexisting sperm DNA fragmentation and seminal oxidative stress on the outcome of varicocelectomy in infertile patients: A prospective controlled study. Arab J. Urol. 2017;15(2):131-139. 10.1016/j' target='_blank'>https://doi: 10.1016/j. aju.2017.03.002.
  23. Altmann T., Gennery A.R. DNA ligase IV syndrome. Orphanet J. Rare Dis. 2016;11(1):137-145. 10.1186/s13023-016-0520-1' target='_blank'>https://doi: 10.1186/s13023-016-0520-1
  24. Souliotis V.L., Sfikakis P.P. Increased DNA double-strand breaks and enhanced apoptosis in patients with lupus nephritis. Lupus. 2015;24(8):804-815. https://doi: 10.1177/0961203314565413
  25. Sinclair S.H., Rennoll-Bankert K.E., Dumler J.S. Effector bottleneck: microbial reprogramming of parasitized host cell transcription by epigenetic remodeling of chromatin structure. Front Genet. 2014;5:274. https://doi: 10.3389/fgene.2014.00274

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies