Dual-energy computed tomography in the diagnostics of urolithiasis


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The aim. To assess the diagnostic performance of dual-energy computed tomography (DECT) in the evaluation of the composition of urinary stones «in vivo». Materials and methods. A total of 91 patients aged from 20 to 70 years old (mean 42.7) with urinary stone disease were examined at Sechenov University, including 68 men (75%) and 23 women (25%). Prior to surgery, all patients underwent DECT (Canon, Japan) in order to predict the chemical composition of urinary stones in vivo. Extracorporeal shockwave lithotripsy (ESWL), percutaneous nephrolithotomy (PCNL) and ureteroscopy (URS) was performed in 53 (58.2%), 18 (19.7%) and 20 (22.1%) patients, respectively. Postoperatively, all stones or stone fragments (n=91; 100%) were examined using a comprehensive physical and chemical analysis (X-ray phase analysis, electron microscopy, infrared spectroscopy). Results. In 6 patients (6.6%) staghorn stones were diagnosed, while in 15 (16.5%), 17 (18.7%), 22 (24.2%) and 31 (34.1%) stones were located in ureteropelvic junction, pelvis and ureter, respectively, including 24 patients with lower ureteric stones (26.4%). Prediction of the stone composition in vivo was carried out on the basis of the one indicator, the dual energy ratio (DER). The threshold values of DER for different types of stones were taken from the literature. All stones were divided into 4 groups according to the DECT results: vevellite stones (n=40, 43.9%), Ca-containing stones without vevellite (n=34, 37.3%), uric acid stones (n=10, 10.9%) and struvite stones (n=7, 7.9%). Thus, when comparing the results of DECT and physical and chemical analysis, in the first group four stones were incorrectly assigned by DECT to the group of Ca-containing stones without vevellite and three stones were incorrectly assigned to the group of struvite stones; in the second group four stones were incorrectly assigned to the group of vevellite stones; in the third group one stone was incorrectly assigned to the group of struvite stones; in the fourth group one stone was incorrectly assigned to the group of vevellite stones and one stone in the group of uric acid stones. In order to increase the diagnostic efficiency of DECT, we performed a comprehensive analysis of five specific DECT indicators (stone density at 135 kV, Z eff of the stone, DER, DEI, DED) using discriminant analysis. Thus, the sensitivity, specificity and overall accuracy of DECT with the use of just one indicator (DER) were 83.3%, 89.8%, 86.8% for vevellite, 88.2%, 92.9%, 91.2% for Ca-containing stones without vevellite, 90%, 98.8%, 97.8% for uric acid stones and 60%, 95.3%, 93.4% for struvite stones, respectively. When using discriminant analysis with five specific DECT indicators, higher values of sensitivity, specificity and overall accuracy were seen: 95.2%, 89.8%, 92.3% for a vevellite, 85,3%, 96,4%, 92,3% for Ca-containing stones without a vevellite and 100%, 100% and 100% for both uric acid and struvite stones, respectively. Conclusions. Dual-energy computed tomography is a highly informative method which allows to perform preoperatively the reliable assessment of the chemical composition. DECT in patients with urinary stone disease allows to optimize the treatment strategy and carry out preventive measures on individual basis, taking into account the stone type.

Full Text

Restricted Access

About the authors

L. B Kapanadze

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: Lidakap@rambler.ru

V. I Rudenko

FGAOU VO I.M. Sechenov First Moscow State Medical University

N. S Serova

FGAOU VO I.M. Sechenov First Moscow State Medical University

L. M Rapoport

FGAOU VO I.M. Sechenov First Moscow State Medical University

K. A Aleksandrova

FGAOU VO I.M. Sechenov First Moscow State Medical University

A. A Novikov

S.S. Yudin City Clinical Hospital

References

  1. Лопаткин Н.А., Дзеранов Н.К. 15-летний опыт применения ДЛТвлечении МКБ. Материалы Пленума правления Российского общества урологов. Сочи. 2003. С. 5-25
  2. Ferraro P.M., Robertson W.G., Johri N., et al. A London experience 1995- 2012: demographic, dietary and biochemical characteristics of a large adult cohort of patients with renal stone disease. QJM 2015;108:561-568
  3. Аляев Ю.Г., Руденко В.И., Газимиев М.-С.А. Мочекаменная болезнь. Актуальные вопросы диагностики и выбора метода лечения. «Триада», Москва, 2006. C. 10-16
  4. Ngo T.C., Assimos D.G. Uric acid nephrolithiasis: recent progress and future directions. Rev Urol. 2007;9:17-27.
  5. Dretler S.P. Stone fragility-a new therapeutic distinction. J Urol. 1988;139:1124-1127.
  6. Pittomvils G., Vandeursen H., Wevers M. et al. The influence of internal stone structure upon the fracture behaviour of urinary calculi. Ultrasound Med Biol. 1994;20:803-810.
  7. Rutchik S.D., Resnick M.I. Ureteropelvic junction obstruction and renal calculi: pathophysiology and implications for management. Urol Clin North Am. 1998;25:317-321.
  8. Saw K.C., Lingeman J.E. Management of calyceal stones. AUA Update Series. 1999;20:154-159.
  9. Zhong P., Preminger G.M. Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy. J Endourol. 1994;8(4):263-268.
  10. Hounsfield G.N. Computerized transverse axial scanning (tomography). Description of system. Br J Radiol. 1973;46:1016-1022.
  11. Alvarez R.E., Macovski A. Energy-selective reconstructions in x-ray computerized tomography. Phys Med Biol. 1976;21(5):733-744.
  12. Macovski A., Alvarez R.E., Chan J.L., Stonestrom J.P., Zatz L.M. Energy dependent reconstruction in x-ray computerized tomography. ComputBiol Med. 1976;6(4):325-336.
  13. Johnson T.R., Krauss B., Sedlmair M., et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510-1517.
  14. Flohr T.G., McCollough C.H., Bruder H. et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16:256-268.
  15. Graser A., Johnson T.R., Chandarana H., Macari M. Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol. 2009;19(1):13-23.
  16. Капанадзе Л.Б., Серова Н.С., Руденко В.И. Аспекты применения двухэнергетической компьютерной томографии в диагностике мочекаменной болезни. Российский электронный журнал лучевой диагностики. 2017;7(3):165-173
  17. Капанадзе Л.Б., Терновой С.К., Руденко В.И., Серова Н.С. Клиническое значение в диагностике и лечении мочекаменной болезни. Урология. 2018;1:143-149
  18. Мартов А.Г., Мазуренко Д.А., Климкова М.М., Синицын В.Е., Нерсисян Л.А., Гаджиев Н.К. Двухэнергетическая компьютерная томография в диагностике мочекаменной болезни: новый метод определения химического состава мочевых камней. Урология. 2017; 3: 98-103
  19. Patel T. et al. Skin to stone distance is an independent predictor of stone-free status followingshockwave lithotripsy. J Endourol. 2009; 23:1383.
  20. Primak A.N., Ramirez Giraldo J.C., Liu X., Yu L., McCollough C.H. Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys 2009;36(4):1359-1369.
  21. Matlaga B.R., Kawamoto S., Fishman E. Dual source computed tomography: a novel technique to determine stone composition. Urology. 2008;72(5):1164-1168.
  22. Kulkarni N.M., Eisner B.H., Pinho D.F., Joshi M.C., Kambadakone A.R., Sahani D. V. Determination of renal stone composition in phantom and patients using single-source dual-energy computed tomography. J Comput Assist Tomogr. 2013;37(1):37-45.
  23. Spek A., Strittmatter F., Graser A., Kufer P., Stief C., Staehler M. Dual energy can accurately differentiate uric acid-containing urinary calculi from calcium stones. World J Urol. 2016;34(9):1297-1302.
  24. Zheng X. et al. Dual-energy computed tomography for characterizing urinary calcified calculi and uric acid calculi: A meta-analysis. Eur J Radiol. 2016;85:1843.
  25. Hidas G., Eliahou R., Duvdevani M., Coulon P., Lemaitre L., Gofrit O.N., Pode D., Sosna J. Determination of renal stone composition with dualenergy CT: in vivo analysis and comparison with x-ray diffraction. Radiology. 2010;257(2):394-401.
  26. Thomas C., Heuschmid M., Schilling D., Ketelsen D., Tsiflikas I., Stenzl A., Claussen C.D., Schlemmer H.P. Urinary calculi composed of uric acid, cystine, and mineral salts: differentiation with dual-energy CT at a radiation dose comparable to that of intravenous pyelography. Radiology. 2010;257(2):402-409.
  27. Acharya S., Goyal A., Bhalla A.S., Sharma R., Seth A., Gupta A.K. In vivo characterization of urinary calculi on dual-energy CT: going a step ahead with sub-differentiation of calcium stones. ActaRadiol. 2015;56(7): 881-889.
  28. Ferrero A.,Montoya J.C., Vaughan L.E.,Huang A.E.,McKeag I.O.,Enders F.T., Williams J.C. Jr, McCollough C.H. Quantitative Prediction of Stone Fragility From Routine Dual Energy CT: Ex vivo proof of Feasibility. AcadRadiol. 201623 (12):1545-1552.
  29. Habashy D., Xia R., Ridley W., Chan L., Ridley L. Impact of dual energy characterization of urinary calculus on management. J Med Imaging RadiatOncol. 2016;60(5):624-631.
  30. Largo R., Stolzmann P., Fankhauser C.D., Poyet C., Wolfsgruber P., Sulser T., Alkadhi H., Winklhofer S. Predictive value of low tube voltage and dual-energy CT for successful shock wave lithotripsy: an in vitro study. Urolithiasis. 2016;44(3):271-276.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies