THE CELL TECHNOLOGIES IN MODIFICATION OF MESH MATERIALS USED IN UROLOGY


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Based on the literary analysis, the influence of cellular technologies on the results of implantation of mesh materials was studied. The scientific literature of recent years contains a large amount of data devoted to the study of mesh structures and the possibilities of their modification using multipotent stromal cells (MSC) for implantation into patients for correcting tissue defects and pelvic organ prolapse. However, the ideal implant has not yet been created. Additional studies with a longer follow-up period are needed to determine the most successful and safe methods and materials for the restoration of pathologically altered or lost tissues and the transition to clinical trials. It is also yet to come to an unambiguous understanding of the best sources of MSC, ways for stimulation of proliferation, preservation and delivery of these cells into the necessary tissues of the body, to thoroughly study the causes of inefficiency and the risks of developing various complications, especially in the long term. The progress of urological implantology in modern conditions, of course, will be associated with the introduction of modern materials and technologies, including the using MSC.

Full Text

Restricted Access

About the authors

I. V Maiborodin

Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch; Institute of Molecular Pathology and Pathomorphology, Federal State Budget Scientific Institution “Federal Research Center of Fundamental and Translational Medicine”

Email: imai@mai.ru
MD, Ph.D., DrSc(Med), Professor, Chief Researcher, Laboratory of Health Management Technologies, The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Chief Researcher, Laboratory of cell biology and cytology, Institute of Molecular Pathology and Pathomorphology, Federal State Budgetary Scientific Institution «Federal Research Center for Fundamental and Translational Medicine» of the Ministry of Science and Higher Education of the Russian Federation Novosibirsk, Russia

G. Y.U Yarin

Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch

Ph.D., MD student at the Laboratory of Health Management Technologies Novosibirsk, Russia

I. A Vilgelmi

Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch

Ph.D. student Laboratory of Health Management Technologies Novosibirsk, Russia

S. V Marchukov

Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch

Ph.D., MD student at the Laboratory of Health Management Technologies Novosibirsk, Russia

V. I Maiborodina

Institute of Molecular Pathology and Pathomorphology, Federal State Budget Scientific Institution “Federal Research Center of Fundamental and Translational Medicine”

MD, Ph.D., DrSc(Med), Leading Researcher, Laboratory of ultrastructural basis of pathology Novosibirsk, Russia

N. V Onoprienko

Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch

Ph.D., MD, Senior researcher at the Laboratory of Health Management Technologies Novosibirsk, Russia

References

  1. Ulrich D., Edwards S.L., Su K., Tan K.S., White J.F., Ramshaw J.A., Lo C., Rosamilia A., Werkmeister J.A., Gargett C.E. Human endometrial mesenchymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair. Tissue Eng Part A. 2014;20(3-4):785-798. https://doi.org/10.1089/ten. TEA.2013.0170
  2. Edwards S.L., Ulrich D., White J.F., Su K., Rosamilia A., Ramshaw J.A., Gargett C.E., Werkmeister J.A. Temporal changes in the biomechanical properties of endometrial mesenchymal stem cell seeded scaffolds in a rat model. Acta Biomater. 2015;13:286-294. https://doi.org/10.1016/j. actbio.2014.10.043
  3. Martin-Piedra M.A., Garzon I., Gomez-Sotelo A., Garcia-Abril E., Jaimes-Parra B.D., Lopez-Cantarero M., Alaminos M., Campos A. Generation and evaluation of novel stromal cell-containing tissue engineered artificial stromas for the surgical repair of abdominal defects. Biotechnol J. 2017;12(12). https://doi.org/10.1002/biot.201700078
  4. Zhao J., Xu J.J. Experimental study on application of polypropylene hernia of fat stem cells in rats. Eur Rev Med Pharmacol Sci. 2018;22(18):6156-6161. https://doi.org/10.26355/eurrev_201809_15957
  5. Emmerson S., Mukherjee S., Melendez-Munoz J., Cousins F., Edwards S.L., Karjalainen P., Ng M., Tan K.S., Darzi S., Bhakoo K., Rosamilia A., Werkmeister J.A., Gargett C.E. Composite mesh design for delivery of autologous mesenchymal stem cells influences mesh integration, exposure and biocompatibility in an ovine model ofpelvic organ prolapse. Biomaterials. 2019;225:119495. https://doi.org/10.1016/j.biomaterials.2019.119495.
  6. Kollhoff D.M., Cheng E.Y., Sharma A.K. Urologic applications of engineered tissue. Regen Med. 2011;6(6):757-765. https://doi.org/10.2217/rme.11.91
  7. Chen B., Dave B. Challenges and future prospects for tissue engineering in female pelvic medicine and reconstructive surgery. Curr Urol Rep. 2014;15(8):425. https://doi.org/10.1007/s11934-014-0425-2
  8. Hanson S., D’Souza R.N., Hematti P. Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering. Tissue Eng Part A. 2014;20(15-16):2162-8. https://doi.org/10.1089/ten. tea.2013.0359
  9. Jessop Z.M., Javed M., Otto I.A., Combellack E.J., Morgan S., Breugem C.C., Archer C.W., Khan I.M., Lineaweaver W.C., Kon M., Malda J., WhitakerI.S. Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering. Stem Cell Res Ther. 2016;7:19. https://doi.org/10.1186/s13287-015-0273-0
  10. Gao Y., Krpata D.M., Criss C.N., Liu L., Posielski N., Rosen M.J., Novitsky Y.W. Effects of mesenchymal stem cell and fibroblast coating on immunogenic potential of prosthetic meshes in vitro. Surg Endosc. 2014;28(8):2357-67. https://doi.org/10.1007/s00464-014-3470-5
  11. Павлов В.Н., А.Г. Ящук, И.И. Мусин, Н.А. Муфазалова, О.Р. Шангина, И.Б. Фаткуллина, К.В. Данилко, В.А. Кулавский, Э.Р. Мехтиева, А.Р. Молоканова Экспериментальное морфологическое обоснование применения культур мультипотентных мезенхимальных стволовых клеток в комбинации с биоматериалами в реконструкции тазового дна. Урология. 2019;(4):32-37. https://doi.org/10.18565/ urology.2019.4.32-37
  12. Brown B.N., Londono R., Tottey S., Zhang L., Kukla K.A., Wolf M.T., Daly K.A., Reing J.E., Badylak S.F. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 2012;8(3):978-987. https://doi. org/10.1016/j.actbio.2011.11.031
  13. Mukherjee S., Darzi S., Paul K., Werkmeister J.A., Gargett C.E. Mesenchymal stem cell-based bioengineered constructs: foreign body response, cross talk with macrophages and impact of biomaterial design strategies for pelvic floor disorders. Interface Focus. 2019;9(4):20180089. https://doi. org/10.1098/rsfs.2018.0089
  14. S.F. van Osch G.J., Bayon Y., Lange J.F., Bastiaansen-Jenniskens Y.M. Biomaterials influence macrophage-mesenchymal stem cell interaction In Vitro. Tissue Eng Part A. 2016;22(17-18):1098-1107. https://doi. org/10.1089/ten.TEA.2016.0162
  15. Gao Y., Liu L.J., Blatnik J.A., Krpata D.M., Anderson J.M., Criss C.N., Posielski N., Novitsky Y.W. Methodology of fibroblast and mesenchymal stem cell coating of surgical meshes: a pilot analysis. J Biomed Mater Res B Appl Biomater. 2014;102(4):797-805. https://doi.org/10.1002/ jbm.b.33061
  16. Bläzquez R., Sânchez-Margallo F.M., Âlvarez V., Uson A., Marinaro F., Casado J.G. Fibrin glue mesh fixation combined with mesenchymal stem cells or exosomes modulates the inflammatory reaction in a murine model of incisional hernia. Acta Biomater. 2018;71:318-329. https://doi. org/10.1016/j.actbio.2018.02.014
  17. Майбородин И.В., Колесников И.С., Шеплев Б.В., Рагимова Т.М., Ковынцев А.Н., Ковынцев Д.Н., Шевела А.И. Морфология прилежащих тканей десны после дентальной имплантации с применением препаратов фибрина. Стоматология. 2009;88(1):9-13.
  18. Handel M., Hammer T.R., Nooeaid P., Boccaccini A.R., Hoefer D. 45S5-Bioglass(®)-based 3D-scaffolds seeded with human adipose tissue-derived stem cells induce in vivo vascularization in the CAM angiogenesis assay. Tissue Eng Part A. 2013;19(23-24):2703-2712. https://doi. org/10.1089/ten.TEA.2012.0707
  19. Mishra R., Roux B.M., Posukonis M., Bodamer E., Brey E.M., Fisher J.P., Dean D. Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds. Biomaterials. 2016;77:255-266. https://doi.org/10.1016Zi.biomaterials.2015.10.026
  20. Nowacki M., Jundzitt A., Nazarewski L., Kotela A., Kloskowski T., Skopinska-Wisniewska J., Bodnar M., Lukasiewicz A., Nazarewski S., Kotela I., Kucharzewski M., Pokrywczynska M., Marszatek A., Drewa T. Blood vessel matrix seeded with cells: a better alternative for abdominal wall reconstruction-a long-term study. Biomed Res Int. 2015;2015:890613. https://doi.org/10.1155/2015/890613
  21. Богдан В.Г., Зафранская М.М., Гаин Ю.М., Демидчик Ю.Е., Багатка С.С., Иванчик Г.И. Модификация коллагенообразования мезенхимальными стволовыми клетками из жировой ткани человека в культуре и при аутотрансплантации при лечении послеоперационных грыж живота. Клеточные технологии в биологии и медицине. 2013;(3):159-163. https://doi.org/10.1007/ s10517-013-2299-6
  22. Spelzini F., Manodoro S., Frigerio M., Nicolini G., Maggioni D., Donzelli E., Altomare L., Farè S., Veneziano F., Avezza F., Tredici G., Milani R. Stem cell augmented mesh materials: an in vitro and in vivo study. Int Urogynecol J. 2015;26(5):675-83. https://doi.org/10.1007/s00192-014-2570-z
  23. Majumder A., Gao Y., Sadava E.E., Anderson J.M., Novitsky Y.W. Cell-coating affects tissue integration of synthetic and biologic meshes: comparative analysis of the onlay and underlay mesh positioning in rats. Surg Endosc. 2016;30(10):4445-53. https://doi.org/10.1007/s00464-016-4764-6
  24. Li Q., Wang J., Liu H., Xie B., Wei L. Tissue-engineered mesh for pelvic floor reconstruction fabricated from silk fibroin scaffold with adipose-derived mesenchymal stem cells. Cell Tissue Res. 2013;354(2):471-480. https://doi.org/10.1007/s00441-013-1719-2
  25. Cheng H., Zhang Y., Zhang B., Cheng J., Wang W., Tang X., Teng P., Li Y. Biocompatibility of polypropylene mesh scaffold with adipose-derived stem cells. Exp Ther Med. 2017; 13(6):2922-2926. https://doi.org/10.3892/ etm.2017.4338
  26. Dolce C.J., Stefanidis D., Keller J.E., Walters K.C., Newcomb W.L., Heath J.J., Norton H.J., Lincourt A.E., Kercher K.W., Heniford B.T. Pushing the envelope in biomaterial research: initial results of prosthetic coating with stem cells in a rat model. Surg Endosc. 2010;24(11):2687-2693. https:// doi.org/10.1007/s00464-010-1026-x
  27. Mestak O., Matouskova E., Spurkova Z., Benkova K., Vesely P., Mestak J., Molitor M., Pombinho A., Sukop A. Mesenchymal stem cells seeded on cross-linked and noncross-linked acellular porcine dermal scaffolds for long-term full-thickness hernia repair in a small animal model. Artif Organs. 2014;38(7):572-579. https://doi.org/10.1111/aor.12224
  28. Klinger A., Kawata M., Villalobos M., Jones R.B., Pike S., Wu N., Chang S., Zhang P., DiMuzio P., Vernengo J., Benvenuto P., Goldfarb R.D., Hunter K., Liu Y., Carpenter J.P., Tulenko T.N. Living scaffolds: surgical repair using scaffolds seeded with human adipose-derived stem cells. Hernia. 2016;20(1):161-170. https://doi.org/10.1007/s10029-015-1415-0
  29. Ding J., Han Q, Deng M., Song X.C., Chen C., Ai F.F., Zhu L., Zhao R.C. Induction of human umbilical cord mesenchymal stem cells into tissue-forming cells in a murine model: implications for pelvic floor reconstruction. Cell Tissue Res. 2018;372(3):535-547. https://doi.org/10.1007/s00441-017-2781-y
  30. Mendelson K., Aikawa E., Mettler B.A., Sales V., Martin D., Mayer J.E., Schoen F.J. Healing and remodeling of bioengineered pulmonary artery patches implanted in sheep. Cardiovasc Pathol. 2007;16(5) :277-282. https://doi.org/10.1016Zj.carpath.2007.03.008
  31. Майбородин И.В., Шевела А.И., Анищенко В.В., Матвеева В.А., Шевела А.А., Дровосеков М.Н., Власов В.В. Особенности реакции тканей крыс на внутрибрюшинные имплантаты из биодеградируемого полигидроксиалканоата. Морфология. 2011;139(2):62-66.
  32. Майбородин И.В., Шевела А.И., Морозов В.В., Новикова Я.В., Матвеева В.А., Дровосеков М.Н., Баранник М.И. Реакция тканей крыс на имплантацию полигидроксиалканоата в состоянии пленок и ультратонких волокон. Бюлл экспер биол мед. 2012;154(9):365-370. https://doi.org/10.1007/ s10517-013-1955-1

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies