Are «optimal» modes of laser lithotripsy optimal?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: to evaluate the effectiveness of the recommended modes of laser lithotripsy in clinical practice by analyzing the necessity of changing laser radiation parameters during percutaneous nephrolithotripsy (PCNL), ureterolithotripsy (URS) and retrograde intrarenal surgery (RIRS).

Materials and methods: a prospective non-randomized clinical study was conducted from October 2023 to December 2023. Patients who underwent surgical procedures for urinary stones using a Thulium fiber laser at the Clinic of Urology of Sechenov University were included. Data on localization, size and radiological density of the stones, initial parameters of laser radiation, presence or absence of mode change were recorded. Statistical data was processed using IBM SPSS Statistics software, version 26.0.0.0.0.

Results: 90 patients were included in the study. Laser radiation mode change was recorded in 38% of cases when performing RIRS, in 25% – during PCNL, and in 24% – during URS. A significantly higher total energy consumption at comparable volumes and radiological density of the stones was registered in the group of mode change at RIRS. In the URS group the results suggest that the laser radiation mode change depends on the volume and density of urinary stones.

Discussion: the need for intraoperative change of laser radiation modes in 31% of all observations may indicate that the existing optimal modes for stone destruction in clinical practice may be suboptimal. New studies of the structure and mechanical properties of urinary stones, assessment of their porosity, hardness, size and properties of crystals, as well as the use of Artificial Intelligence for automatic set up of laser radiation parameters for higher efficiency of lithotripsy.

Conclusion: In addition to linear size and radiologic density urinary stones have a whole complex of morphometric and physicochemical characteristics, so the laser lithotripsy parameters preset should be viewed only as a guideline, while effective settings are to be selected intraoperatively considering urologist’s knowledge of laser radiation physical properties.

Full Text

Restricted Access

About the authors

Y. A. Lee

Institute for Urology and Reproductive Health, Sechenov University

Email: julee1806@gmail.com
ORCID iD: 0009-0009-7448-3934

clinical resident

Russian Federation, Moscow

A. M. Dymov

Institute for Urology and Reproductive Health, Sechenov University

Author for correspondence.
Email: alimdv@mail.ru
ORCID iD: 0000-0001-6513-9888

PhD, professor

Russian Federation, Moscow

S. H. Ali

Institute for Urology and Reproductive Health, Sechenov University

Email: ali_s_kh@staff.sechenov.ru
ORCID iD: 0000-0002-7365-4190

associate professor

Russian Federation, Moscow

P. A. Chislov

Institute for Urology and Reproductive Health, Sechenov University

Email: pavel_chislov@mail.ru

clinical resident

Russian Federation, Moscow

V. Y. Mikhailov

Institute for Urology and Reproductive Health, Sechenov University

Email: mikhaylov_v_yu@staff.sechenov.ru

phd, senior researcher

Russian Federation, Moscow

M. V. Lobanov

Institute for Urology and Reproductive Health, Sechenov University

Email: lobanov_m_v@staff.sechenov.ru

urologist, Urology Clinic

Russian Federation, Moscow

G. N. Akopyan

Institute for Urology and Reproductive Health, Sechenov University

Email: akopyan_g_n@staff.sechenov.ru
ORCID iD: 0000-0002-1583-6121

phd, professor

Russian Federation, Moscow

D. V. Chinenov

Institute for Urology and Reproductive Health, Sechenov University

Email: chinenov_d_v@staff.sechenov.ru
ORCID iD: 0000-0001-9056-9791

associate professor

Russian Federation, Moscow

M. A. Gazimiev

Institute for Urology and Reproductive Health, Sechenov University

Email: gazimiev_m_a@staff.sechenov.ru
ORCID iD: 0000-0002-8398-1865

phd, professor

Russian Federation, Moscow

A. Z. Vinarov

Institute for Urology and Reproductive Health, Sechenov University

Email: avinarov@mail.ru
ORCID iD: 0000-0001-9510-9487

phd, professor

Russian Federation, Moscow

References

  1. Kronenberg P., Cerrato C., Juliebo-Jones P., Herrmann T., Tokas T., Somani B. Advances in lasers for the minimally invasive treatment of upper and lower urinary tract conditions: a systematic review. World J Urol. 2023. doi: 10.1007/s00345-023-04669-5.
  2. Almeras C., Raynal G., Meria P. 2022 recommendations of the AFU Lithiasis Committee: Objectives, results, residual stones and fragments. Progrès en Urologie. 2023;33(14):893–900, ISSN 1166-7087. doi: 10.1016/j.purol.2023.08.005.
  3. Gadzhiev N., Obidnyak V., Gorelov D. Retrograde intrarenal surgery: current possibilities and perspectives. Voprosy urologii i andrologii. 2020;8(2):27– 32. doi: 10.20953/2307-6631-2020-2-27-32. Russian (Гаджиев Н., Обидняк В., Горелов Д. Ретроградная интраренальная хирургия: современные возможности и перспективы. Вопросы урологии и андрологии. 2020;8(2):27–32. doi: 10.20953/2307-6631-2020-2-27-32).
  4. Rapoport L., Vinarov A., Sorokin N., Dymov A., Enikeev D., Tsarichenko D., Lekarev V., Klimov R., Andreeva V., Kovalenko A. Experimental verification of Thulium lithotripsy. Urologiia. 2018;5:74–80. doi: 10.18565/urology.2018.5.74–80. Russian (Рапопорт Л., Винаров А., Сорокин Н., Дымов А., Еникеев Д., Цариченко Д., Лекарев В., Климов Р., Андреева В., Коваленко А. Экспериментальное обоснование тулиевой литотрипсии. Урология. 2018;5:74–80. doi: 10.18565/urology.2018.5.74-80).
  5. Klimov R., Lekarev V., Tsarichenko D., Dymov A., Akopyan G., Chinenov D., Korolev D., Ali S., Gerasimov A., Rapoport L., Glybochko P. Retrograde intrarenal surgery using a 1.94 μM Superpulsed Thulium Fiber Laser. Urologiia. 2021;1:28–32. doi: 10.18565/urology.2021.1.28-32. (Климов Р., Лекарев В., Цариченко Д., Дымов А., Акопян Г., Чиненов Д., Королев Д., Али С., Герасимов А., Рапопорт Л., Глыбочко П. Ретроградная интраренальная хирургия с использованием суперимпульсного тулиевого волоконного лазера с волной длиной 1,94 мкм. Урология. 2021;1:28–32. doi: 10.18565/urology.2021.1.28-32).
  6. Martov A., Ergakov D., Guseinov M., Andronov A., Dutov C., Vinnichenko V., Kovalenko A. Initial experience in clinical application of Thulium laser contact lithotripsy for transurethral treatment of urolithiasis. Urologiia. 2018;1:112–120. doi: 10.18565/urology.2018.1.112-120. (Мартов А., Ергаков Д., Гусейнов М., Андронов А., Дутов С., Винниченко В., Коваленко А. Первоначальный опыт клинического применения тулиевой контактной литотрипсии в трансуретральном лечении мочекаменной болезни. Урология. 2018;1:112–120. doi: 10.18565/urology.2018.1.112-120).
  7. Klimov R., Lekarev V., Tsarichenko D., Dymov A., Akopyan G., Chinenov D., Korolev D., Ali S., Gerasimov A., Rapoport L., Glybochko P. Optimazion of the parameters of a superpose thulium fiber laser with wavelength 1.94 μM for minipercutaneous lithotripsy. Voprosy urologii i andrologii. 2020;8(1):45–51. doi: 10.20953/2307-6631-2020-1-45-51. Russian (Климов Р., Лекарев В., Цариченко Д., Дымов А., Акопян Г., Чиненов Д., Королев Д., Али С., Герасимов А., Рапопорт Л., Еникеев Д. Оптимизация параметров суперимпульсного тулиевого волоконного лазера с длиной волны излучения 1,94 мкм при миниперкутанной литотрипсии. Вопросы урологии и андрологии. 2020;8(1):45–51. doi: 10.20953/2307-6631-2020-1-45-51.
  8. Enikeev D., Grigoryan V., Fokin I., Morozov A., Taratkin M., Klimov R., Kozlov V., Gabdullina S., Glybochko P. Endoscopic lithotripsy with a SuperPulsed thulium-fiber lase forureteral stones: A single-center experience. Int J Urol. 2021;28(3):261–265. doi: 10.1111/iju.14443.
  9. Enikeev D., Taratkin M., Klimov R., Alyaev Y., Rapoport L., Gazimiev M., Korolev D., Ali S., Akopyan G., Tsarichenko D., Markovina I., Ventimiglia E., Goryacheva E., Okhunov Z., Jeferson F.A., Glybochko P., Traxer O. Thulium-fber laser for lithotripsy: frst clinical experience in percutaneous nephrolithotomy. World J Urol. 2020;38:3069–3074. doi: 10.1007/s00345-020-03134-x.
  10. Enikeev D., Taratkin M., Klimov R., Inoyatov J., Azilgareeva C., Ali S., Korolev D., Corrales M., Traxer O., Glybochko P. Superpulsed thulium-fiber laser for stone dusting – in search of perfect ablation regimen. A prospective single center study. J Endourol. 2020;34(11):1175–1179. doi: 10.1089/end.2020.0519.
  11. Blackmon R.L., Irby P.B., Fried N.M. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. J Biomed. 2011;16(7). doi: 10.1117/1.3564884.
  12. Traxer O., Keller E. Thulium fber laser: the new player for kidney stone treatment? A comparison with Holmium: YAG laser. World J Urol. 2019. doi: 10.1007/s00345-019-02654-5.
  13. Sierra A., Corrales M., Piñero A., Traxer O. Thulium fiber laser pre-settings during ureterorenoscopy: Twitter’s experts’ recommendations World J Urol. 2022;40:1529–1535. doi: 10.1007/s00345-022-03966-9.
  14. Mishra A., Medairos R., Chen J., Soto-Palou F., Wu Y., Antonelli J., Preminger G.M., Lipkin M.E., Zhong P. Exploring optimal settings for safe and effective thulium fibre laser lithotripsy in a kidney model. BJU Int. 2023; Nov 9. doi: 10.1111/bju.16218.
  15. Jones P., Beisland C., Ulvik O. Current status of thulium fibre laser lithotripsy: an up-to-date review. BJU Int. 2021;128:531–538. doi: 10.1111/bju.15551.
  16. Enikeev D., Grigoryan V., Fokin I., Morozov A., Taratkin M., Klimov R., Kozlov V., Gabdullina S., Glybochko P. Endoscopic lithotripsy with a SuperPulsed thulium-fiber laser for ureteral stones: a single-center experience. Int J Urol. 2021;28:261–265. doi: 10.1111/iju.14443.
  17. Kronenberg P., Hameed B.Z., Somani B. Outcomes of thulium fibre laser for treatment of urinary tract stones: results of a systematic review. Curr Opin Urol. 2021;31:80–86. doi: 10.1097/MOU.0000000000000853.
  18. Shah D., Patil A., Reddy N., Singh A., Ganpule A., Sabnis R. A clinical experience of thulium fibre laser in miniperc to dust with suction: a new horizon. World J Urol. 2021;39:2727–2732. doi: 10.1007/s00345-020-03458-8.
  19. Corrales M., Doizi S., Barghouthy Y., Traxer O., Daudon M. Classification of Stones According to Michel Daudon: A Narrative Review. Eur Urol Focus. 2021;(1):13–21. doi: 10.1016/j.euf.2020.11.004.
  20. Black K.M., Law H., Aldoukhi A., Deng J., Ghani K.R. Deep learning computer vision algorithm for detecting kidney stone composition. BJU Int. 2020;25(6):920–924. doi: 10.1111/bju.15035.
  21. Estrade V., Daudon M., Richard E., Bernhard J.C., Bladou F., Robert G., Facq L. Denis de Senneville B. Deep morphological recognition of kidney stones using intra-operative endoscopic digital videos. Phys Med Biol. 2022;67(16). doi: 10.1088/1361-6560/ac8592.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies