Synthesis of heterogeneous self-organizing models for for plain structures approximation


A solution for a problem of a given heterogeneous structure approximation by an arbitrary dimensional elastic dynamical model in a plane is proposed. The model is developed on the as the potential system with the characteristics of the elastic loop with the connectivity matix and the self-organizing form with the state memory. It is shown that the proposed model is able to fit the given structure as the sub-optimal solution, preserving its form at least close to its initial or desired construction, while the dynamic structure parts interact with same type parts of the given structure only.

About the authors

Sergey A Kolpashchikov

Samara State Technical University

Samara State Technical University

Aleksandr S Ryazanov

Samara State Technical University

Samara State Technical University

Аleksandr А Yudashkin

Samara State Technical University

Samara State Technical University


  1. Passerone R., Burch J.R., Sangiovanni-Vincentelli A.L. Conservative approximations for heterogeneous design // International Conference On Embedded Software: Proc. of the 4th int. conf. - Pisa, Italy, 2004. - Session System Design. - P. 155-164
  2. Khuller S., Kim Y., Woeginger G. Approximation Schemes for Broadcasting in Heterogenous Networks // Approximation, Randomization, and Combinatorial Optimization. - Springer Berlin/Heidelberg, 2004. - P. 163-170.
  3. Self-assembly from milli- to nanoscales: methods and applications / M. Mastrangeli, S. Abbasi, C. Varel, C. Van Hoof, J-P Celis, K. F. Bohringer, - J. Micromech. Microeng. 19. - 2009.
  4. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. - М.: Мир, 1982. - 416 с.
  5. Durbin R., Willshaw D.J. An analogue approach to the traveling salesman problem using an elastic net method // Nature. - 1987. - V. 326. - P. 689.
  6. Юдашкин А.А. Синтез самоорганизующихся систем, запоминающих и восстанавливающих несколько собственных конфигураций в трехмерном пространстве // Мехатроника, автоматизация и управление. - 2005. - №1. - C. 7-11.
  7. Юдашкин А.А. О подходе к построению трансформирующихся систем с несколькими устойчивыми состояниями // Дифференциальные уравнения и их приложения: Межвуз. сб. науч. тр. - 2002. - №1. - С. 64-68.
  8. Юдашкин А.А. Классификация образов и ее связь с топологией многообразий динамических систем // Изв. Самарского научного центра РАН. - 2001. - T.3. - №1. - С. 93-98.



Abstract: 53

PDF (Russian): 19


Article Metrics

Metrics Loading ...



  • There are currently no refbacks.

Copyright (c) 2009 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies