The smart city infrastructure object: a system for environmental monitoring and public information / warning

Cover Page

Abstract

One of the possible tools to improve the living standards of citizens is automation of urban infrastructure management using information and communication solutions. An original system for environmental monitoring and public informing / warning as an infrastructure object of the smart city is reviewed. The design and software implementation of the client and server parts of the project based on the Alpine Linux operating system, the Python programming language, the Django web framework, and the Docker containerization technology are described. One of the implemented hardware and software client solutions using Wi-Fi, 4G / LTE and LoRaWAN wireless data transfer technologies is reviewed. The final consumers of this system are both government institutions and private enterprises. The methods of use are not strictly regulated, the implementation from smart transport stops to factory and city distributed public information / warning systems with environmental monitoring is recommended and tested. This work is an extension of the author’s project of a distributed information and emergency public warning system. The scientific novelty lies in the implementation of additional authentication of control actions based on hidden marking of information flows, independently calculated and produced on the client and server side through meta-information about previous network interactions (trace route, commands, timestamps, etc.). To achieve this, the convolution function is used. Data of arbitrary length is converted into an output bit string of a set dimension, followed by signature matching with a table of actions that do not interfere with network communication and are not detected by network traffic self-similarity tools. The architecture provides for the possibility of integration with author's knowledge-intensive solutions: a system for intelligent adaptive management of the enterprise network infrastructure, as well as a self-organizing virtual secure communication channel module based on stochastic multilayer encryption and overlay technologies.

About the authors

E. A. Basinya

Novosibirsk State Technical University

Author for correspondence.
Email: info@eco-vector.com
Russian Federation

References

Statistics

Views

Abstract: 69

PDF (English): 40

Dimensions

Article Metrics

Metrics Loading ...

PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2020 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies