Optimal inductor design for surface hardening under conditions of interval uncertaity of process parameters

Cover Page

Cite item


The paper is devoted to the optimal inductor design for surface hardening of steel cylindrical billets. The heating stage of surface induction hardening is considered as an object with distributed parameters, which unknowns are design characteristics of the induction installation. In real industrial conditions the main technological parameters are often defined by the intervals of their possible values. That is why, in the paper the optimal design problem under the conditions of interval uncertainty of initial billet’s temperature and thermal exchange coefficient is formulated. Solution of the formulated problem is carried out by alternance method of parametric optimization based on numerical model developed in Altair FLUX software.

Full Text




About the authors

Anton V. Popov

Samara State Technical University

Author for correspondence.
Email: antonsam93@mail.ru

Senior Lecturer

Russian Federation, 244, Molodogvardeyskaya str., Samara


  1. Rudnev V.I. et al. Handbook of Induction Heating. – New York, Basel: Marcel Dekker Inc., 2003. – 797 p.
  2. Blanter M.E. Metallovedenie i ternicheskaya obrabotka [Metal science and heat treatment]. Moscow: Mash-giz, 1963. 416 s.
  3. Pleshivtseva Yu.E., Popov A.V., Popova M.A., Derevyanov M.Yu. Optimalnoye proektirovaniye induktora dlya poverkhnostnoi zakalki tsilindricheskikh zagotovok na osnove chislennoi dvumernoi modeli [Optimal inductor design for surface hardening of cylindrical billets] // Bulletin of Astrakhan State Technical Unversi-ty. Series “Control, computer engineering, informatics”. – Astrakhan, 2019. – № 1. – pp. 40–50.
  4. Rapoport E.Ya., Pleshivtseva Yu.E. Optimalnoe upravleniye temperaturnimi rezhimami induktsionnogo nagreva [Optimal control of induction heating processes]. Мoscow: Nauka, 2012. 309 p.
  5. Rapoport E.Ya. Optimizatsiya protsessov induktsionnogo nagreva metalla [Optimization of induction heating processes]. Moscow: Metallurgiya, 1993. 279 p.
  6. Pleshivtseva Yu.E., Popov A.V., Diakonov A.I. Dvumernaya zadacha optimalnogo po tipovim kriteriyam kachestva upravleniya protsessom skvoznogo induktsionnogo nagreva [Two-dimensional problem of opti-mal with respect to typical quality criteria control of through induction heating processes] // Vestnik of Sama-ra State Technical University. Technical Sciences Series. Samara, 2014. № 2(42). pp. 148–163.
  7. Popov A.V. Optimization of Heating Stage for Induction Hardening of Cylindrical Billets // 2019 XXI Inter-national Conference Complex Systems: Control and Modeling Problems (CSCMP). – Samara, Russia, 2019. рp. 237–241.
  8. Rapoport E.Ya. Optimalnoe upravleniye sistemami s raspredelennimi parameterami [Optimal control of sys-tems with distributed parameters]. – Moscow: Visshaya shkola, 2009. 678 p.
  9. Rapoport E.Ya. Alternansniy metod v prikladnikh zadachakh optimizatsii [Alternance method in applied optimization problems]. Moscow: Nauka, 2000. 336 p.
  10. Flux [electronic source]: www.altair.com/flux/ (accessed 01.09.2020).
  11. Sharapova O.Yu. Chislennoye modelirovaniye protsessa periodicheskogo induktsionnogo nagreva na baze konechno-elementnogo programmnogo paketa FLUX [Numerical simulation of static induction heating pro-cess based on finite-element software FLUX] // Vestnik of Samara State Technical University. Technical Sciences Series. Samara, 2011. № 7 (28). pp. 180–185.
  12. Pleshivtseva Yu., Rogachev G., Popov A. MATLAB-FLUX Coupling for numerical modeling in education // SHS Web of Conferences 29,02033 (2016).
  13. Marochnik staley i splavov 2-e izdaniye [Grade guide of steels and alloys. Second edition] / A.S. Zubchen-ko, M.M. Koloskov, Yu. V. Kashirskiy et al. – Moscow: Mashinostroyeniye, 2003. 784 p.
  14. Pleshivtseva Yu., Baldan M., Popov A., Nikanorov A., Rapoport E., Nacke B. Effective methods for optimal design of induction coils on example of surface hardening // COMPEL – The international journal for com-putation and mathematics in electrical and electronic engineering, Vol. 39 No. 1, pp. 90–99.

Supplementary files

Supplementary Files
1. Fig. 1. Geometry of the induction system

Download (36KB)
2. Fig. 2. Shapes of finite temperature distributions for the ultimate achievable heating accuracy

Download (49KB)
3. Fig. 3. The shape of the curve of the resulting temperature distribution with heating accuracy

Download (40KB)
4. Fig. 4. Temperature distribution along the spatial coordinate l at the end of the optimal heating accuracy in the presence of incomplete information about the characteristics of the object at

Download (65KB)
5. Fig. 5. Numerical FLUX model of the heating system a - finite element mesh; b - temperature field along the length of the workpiece at the end of heating.jpg

Download (339KB)
6. Fig. 6. Final temperature distribution along the boundary of the hardened layer with thickness

Download (105KB)
7. Fig. 7. Temperature distributions in the optimal design problem

Download (80KB)

Copyright (c) 2020 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies