Structural modeling of expanded clay cooling technological process in a drum cooler as a control object

Cover Page


Cite item

Full Text

Abstract

The technological process of expanded clay cooling in a drum cooler is considered as a control object with distributed parameters. Taking into account reasonable assumptions and simplifications, the dynamics of the process under consideration is described by a system of non-homogeneous differential equations in partial derivatives of the first order, the solution of which made it possible to obtain operators linking the control action and the main disturbances with the temperature of expanded clay in the drum cooler. The obtained operators of the mathematical model, which are transcendental transfer functions, are approximated by typical forms of transfer functions for the possibility of their further practical application in the synthesis of automation systems. A structural diagram of the mathematical model of the process of expanded clay cooling in a drum cooler as a control object is synthesized. Computational experiments are carried out to study the dynamic and static operating modes of the control object.

About the authors

Maxim A. Nazarov

Samara State Technical University

Author for correspondence.
Email: nazarovm86@yandex.ru

(Ph.D. (Techn.)), Associate Professor, Dept. of Mechanization, Automation, and Energy Supply in Construction

Russian Federation, 244, Molodogvardeyskaya str., Samara, 443100

Konstantin S. Galitskov

Samara State Technical University

Email: ksgal@yandex.ru

(Ph.D. (Techn.)), Associate Professor, Head of Dept. Mechanization, Automation, and Energy Supply in Construction

Russian Federation, 244, Molodogvardeyskaya str., Samara, 443100

References

  1. Gorin V.M., Tokareva S.A., Vytchikov Yu.S., Belyakov I.G., Shiyanov L.P. Primenenie stenovyh kamnej iz bespeschannogo keramzitobetona v zhilishnom stroitelstve [The use of wall blocks made of sand-free expanded clay concrete in residential construction] // Stroitelnye materialy. 2010. № 2. P. 15–18. (In Russian)
  2. Gorin V.M., Tokareva S.A., Kabanova M.K. Stenovye keramzitobetonnye konstrukcii – perspektivnyj material dlya industrialnogo domostroeniya [Wall structures made of expanded clay concrete are a promising material for industrialized housing construction] // Stroitelnye materialy. 2011. № 3. P. 55–58. (In Russian)
  3. Ledyajkin A.S., Liyaskin O.V. Perspektivy primeneniya keramzita v Rossii [The prospects for the use of expanded clay in Russia] // Aktualnye voprosy arhitektury i stroitelstva: Sbornik trudov semnadcatoj Mezhdunarodnoj nauchno-tehnicheskoj konferencii. Saransk, 2018. P. 196–199. (In Russian)
  4. Galitskov K. Intelligent management of high-technology equipment for the manufacture of concrete and ceramic materials and products // Integration, Partnership and Innovation in Construction Science and Education: Proceedings VI International Scientific Conference. MATEC Web of Conferences. 2018. P. 03043. doi: 10.1051/matecconf/201825103043.
  5. Galitskov S., Galitskov K., Samokhvalov O. Computer modeling of the dynamics of energy consumption during expanded clay burning // Complex Systems: Control and Modeling Problems: Proceedings 21st International Conference. Samara, 2019. P. 401–406. doi: 10.1109/CSCMP45713.2019.8976656.
  6. Onackij S.P. Proizvodstvo keramzita [The production of expanded cla]. 3-e izd., pererab. i dop. M.: Strojizdat, 1987. 333 p. (In Russian)
  7. Nazarov M.A. Matematicheskoe opisanie barabannogo holodilnika kak obekta avtomatizacii proizvodstva keramzita [Mathematical Description of a Drum Cooler as an Object of Automation in the Production of Expanded Clay] // Mehanizaciya i avtomatizaciya stroitelstva: sbornik statej. Samara, 2021. P. 75–80. (In Russian)
  8. Nazarov M.A. Approksimaciya matematicheskoj modeli barabannogo holodilnika dlya proizvodstva keramzita kak obekta upravleniya s raspredelennymi parametrami [Approximation of the Mathematical Model of a Drum Cooler for the Production of Expanded Clay as a Distributed Parameter Control Object] // Tradicii i innovacii v stroitelstve i arhitekture: sbornik statej. Samara, 2023. P. 892–898. (In Russian)
  9. Polyak B.T., Sherbakov P.S. Robastnaya ustojchivost i upravlenie [Robust Stability and Control]. M.: Nauka, 2002. 303 p. (In Russian)
  10. Zotov M.G. Robastnye i adaptivnye sistemy [Robust and Adaptive Systems] // Avtomatika i telemehanika. 2015. № 2. P. 61–72. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Nazarov M.A., Galitskov K.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.