On a q-analogue of the Sturm–Liouville operator with discontinuity conditions

Cover Page

Cite item


n this paper, a q-analogue of the Sturm–Liouville problem with discontinuity condition on a finite interval is studied. It is proved that the q-Sturm–Liouville problem with discontinuity conditions is self-adjoint in Lq2(0,π). The completeness theorem and the sampling theorem are proved.

About the authors

Döne Karahan

Harran Üniversitesi

Author for correspondence.
Email: dkarahan@harran.edu.tr
ORCID iD: 0000-0001-6644-5596
Scopus Author ID: 57136741400
ResearcherId: ABF-5888-2020

Mathematics Department, Science and Letter Faculty

Sanliurfa, Turkey


  1. Jackson F. H. q-Difference equations, Am. J. Math., 1910, vol. 32, no. 4, pp. 305–314. DOI: https://doi.org/10.2307/2370183.
  2. Annaby M. H., Mansour Z. S. Fractional q-difference equations, In: q-Fractional Calculus and Equations, Lecture Notes in Mathematics, 2056. Berlin, Heidelberg, Springer, 2012, pp. 223–270. DOI: https://doi.org/10.1007/978-3-642-30898-7_8.
  3. Annaby M. H., Mansour Z. S. Basic Sturm–Liouville problems, J. Phys. A: Math. Gen., 2005, vol. 38, no. 17, pp. 3775–3797. DOI: https://doi.org/10.1088/0305-4470/38/17/005.
  4. Tuna H., Eryilmaz A. Completeness of the system of root functions of q-analogue of Sturm–Liouville operators, Math. Commun., 2014, vol. 19, no. 1, pp. 65–73.
  5. Bustoz J., Suslov S. Basic analogues of Fourier series on a q-quadratic grid, Math. Appl. Anal., 1998, vol. 5, no. 1, pp. 1–38. DOI: https://doi.org/10.4310/MAA.1998.v5.n1.a1.
  6. Annaby M. H. q-Type sampling theorems, Result. Math., 2003, vol. 44, no. 3–4, pp. 214–225. DOI: https://doi.org/10.1007/BF03322983.
  7. Abreu L. D. A q-sampling theorem related to the q-Hankel transform, Proc. Amer. Math. Soc., 2005, vol. 133, no. 4, pp. 1197–1203. DOI: https://doi.org/10.1090/S0002-9939-04-07589-6.
  8. Ismail M. E., Zayed A. I. A q-analogue of the Whittaker–Shannon–Kotel’nikov sampling theorem, Proc. Am. Math. Soc., 2003, vol. 131, no. 12, pp. 3711–3719. DOI: https://doi.org/10.1090/s0002-9939-03-07208-3.
  9. Abreu L. D Sampling theory associated with q-difference equations of the Sturm–Liouville type, J. Phys. A: Math. Gen., 2005, vol. 38, no. 48, pp. 10311–10319. DOI: https://doi.org/10.1088/0305-4470/38/48/005.
  10. Annaby M. H., Mansour Z. S. Asymptotic formulae for eigenvalues and eigenfunctions of q-analogue of Sturm–Liouville problems, Math. Nachr., 2011, vol. 284, no. 4, pp. 443–470. DOI: https://doi.org/10.1002/mana.200810037.
  11. Allahverdiev B. P., Tuna H. Qualitative spectral analysis of singular q-analogue of Sturm–Liouville operators, Bull. Malays. Math. Sci. Soc., 2020, vol. 43, no. 2, pp. 1391–1402. DOI: https://doi.org/10.1007/s40840-019-00747-3.
  12. Allahverdiev B. P., Tuna H. Eigenfunction expansion in the singular case for q-analogue of Sturm–Liouville operators, Casp. J. Math. Sci., 2019, vol. 8, no. 2, pp. 91-102. DOI: https://doi.org/10.22080/CJMS.2018.13943.1339.
  13. Allahverdiev B. P., Tuna H. Limit-point criteria for q-analogue of Sturm–Liouville equations, Quest. Math., 2019, vol. 42, no. 10, pp. 1291–1299. DOI: https://doi.org/10.2989/16073606.2018.1514541.
  14. Allahverdiev B. P., Tuna H. An expansion theorem for q-analogue of Sturm–Liouville operators on the whole line, Turk. J. Math., 2018, vol. 42, no. 3, pp. 1060–1071. DOI: https://doi.org/10.3906/mat-1705-22.
  15. Allahverdiev B. P., Tuna H. Properties of the resolvent of singular q-Dirac operators, Elec. J. Diff. Eq., 2020, vol. 2020, no. 3, pp. 1–13.
  16. Karahan D., Mamedov Kh. R. On a q-boundary value problem with discontinuity conditions, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2021, vol. 13, no. 4, pp. 5–12. EDN: EVNNPJ. DOI: https://doi.org/10.14529/mmph210401.
  17. Huseynov H. M., Dostuyev F. Z. On determination of Sturm–Liouville operator with discontinuity conditions with respect to spectral data, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb., 2016, vol. 42, no. 2, pp. 143–153.
  18. Gasper G., Rahman M. Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, vol. 35. Cambridge, Cambridge Univ. Press, 1990, xx+287 pp.
  19. Kramer H. P. A generalized sampling theory, J. Math. Phys., 1959, vol. 38, pp. 68–72.
  20. Yurko V. A. Introduction to the Theory of Inverse Spectral Problems. Moscow, Fizmatlit, 2007, 384 pp. (In Russian)
  21. Chung K.-S., Chung W.-S., Nam S.-T., Kang H.-J. New q-derivative and q-logarithm, Int. J. Theor. Phys., 1994, vol. 33, no. 10, pp. 2019–2029. DOI: https://doi.org/10.1007/BF00675167.
  22. Floreanini R., Vinet L. A model for the continuous q-ultraspherical polynomials, J. Math. Phys., 1995, vol. 36, no. 7, pp. 3800–3813. DOI: https://doi.org/10.1063/1.530998.
  23. Floreanini R., Vinet L. More on the q-oscillator algebra and q-orthogonal polynomials, J. Phys. A: Math. Gen., 1995, vol. 28, no. 10, pp. L287–293. DOI: https://doi.org/10.1088/0305-4470/28/10/002.
  24. Al-Mdallal Q. M. On the numerical solution of fractional Sturm–Liouville problems, Int. J. Comp. Math., 2010, vol. 87, no. 12, pp. 2837–2845. DOI: https://doi.org/10.1080/00207160802562549.
  25. Al-Mdallal Q. M. An efficient method for solving fractional Sturm–Liouville problems, Chaos, Solitons and Fractals, 2009, vol. 40, no. 1, pp. 183–189. DOI: https://doi.org/10.1016/j.chaos.2007.07.041.

Supplementary files

There are no supplementary files to display.

Copyright (c) 2022 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies