Investigation of deflection of the CNT/G composite by molecular dynamics simulation
- Authors: Kolesnikova A.S1, Kirillova I.V1, Baregamyan G.A1, Kossovich L.Y.1
-
Affiliations:
- N. G. Chernyshevsky Saratov State University (National Research University)
- Issue: Vol 22, No 3 (2018)
- Pages: 574-585
- Section: Articles
- URL: https://journals.eco-vector.com/1991-8615/article/view/20611
- DOI: https://doi.org/10.14498/vsgtu1642
- ID: 20611
Cite item
Full Text
Abstract
Full Text
Введение. Перспектива развития наноустройств связана с нахождением новых уникальных свойств углеродных материалов, что стимулирует синтез и исследование одного из перспективных новых материалов, особенности и возможности которых не были раскрыты в полной мере. Этим материалом является углеродный композит «УНТ-графен», образованный углеродными нанотрубками (УНТ) и графеном. Интерес именно к этому композиту вызван тем, что графен является углеродным материалом с высокой электрической проводимостью, теплопроводностью, оптической прозрачностью и исключительными механическими свойствами [1]. В настоящее время отсутствует технология его массового изготовления из-за сложности получения графена протяженных размеров, что связано с наличием дефектов в синтезируемых образцах графена. Поэтому для решения этой проблемы предложено синтезировать новую гибридную структуру, состоящую из ковалентно соединенных между собой однослойных углеродных нанотрубок (УНТ) и графеновых листов [2]. В настоящее время синтезируемые композиты «УНТ-графен» можно разделить на две морфологические группы [3]: 1) 3D-композит - «колонный графен» - нанотрубки ориентированы вертикально относительно графеновых слоев и расположены между ними; 2) 2D гибридные пленки - трубки расположены между соседними слоями, параллельными им (ковалентное или ван-дер-ваальсовое соединение между УНТ и графеном). 575 К о л е с н и к о в а А. С., К и р и л л о в а И. В., Б а р е г а м я н Г. А., К о с с о в и ч Л. Ю. Во второй группе можно выделить структуры с упорядоченным и хаотическим параллельным расположением УНТ друг относительно друга. Среди двух классов композитов «УНТ-графен» особый интерес вызывает класс композитов 2D гибридные пленки. Этот интерес обусловлен тем, что научных работ по исследованию свойств композита 2D гибридные пленки мало [4-8]. В работе [5] осуществлялось исследование зависимости электрического сопротивления композита «УНТ-графен» от величины деформации изгиба. Авторы работ [4, 5] показали, что электрическое сопротивление композита «УНТ-графен» ниже по сравнению с электрическим сопротивлением составных частей этого композита, т. е. углеродных нанотрубок и графена. Композиты типа «УНТ-графен» уже используются в ультрапрозрачных гибких устройствах памяти [9], в полевых транзисторах [4], а также в качестве суперконденсаторов [10] и материала для электрохимического хранения энергии [11, 12]. Таким образом, можно отметить, что, несмотря на большое разнообразие потенциальных применений гибридного «УНТ-графен» - композита нового поколения, направление его исследования, связанное с механическими свойствами, не изучено. Для расширения областей применения такого композита важной задачей является подробное исследование его свойств. Однако основной задачей улучшения и модернизации наноустройств путем использования в них композитов «УНТ-графен» в качестве элементной базы необходимо исследовать механические свойства этих структур. В настоящее время исследование данных характеристик не проводилось для композита «УНТ-графен» в виде 2D гибридных пленок. Целью данной работы является теоретическое исследование динамической зависимости изгибающей силы от стрелы прогиба композитного материала «УНТ-графен», имеющего вид 2D гибридных пленок. Композит удерживался с двух краев опорами при отсутствии подложки. Поиск равновесного состояния структуры определялся методом молекулярной механики с использованием энергетического потенциала Бреннера [13] в рамках метода молекулярной динамики [14-16]. 1. Объект исследования. Объектом исследования является углеродный композит, образованный двумя графеновыми лентами типа zigzag и тремя нанотрубками типа zigzag, расположенными между ними и соединенными с ними ковалентными химическими связями (рис. 1). В целом композит представляет собой 2D-пленку, протяженную в направленияхAbout the authors
Anna S Kolesnikova
N. G. Chernyshevsky Saratov State University (National Research University)
Email: Kolesnikova.88@mail.ru
Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Mathematical Theory of Elasticity and Biomechanics 83, Astrakhanskaya st., Saratov, 410012, Russian Federation
Irina V Kirillova
N. G. Chernyshevsky Saratov State University (National Research University)
Email: ivkirillova@yandex.ru
Cand. Phys. & Math. Sci.; Director; Scientific and Educational Institute of Nanostructures and Biosystems 83, Astrakhanskaya st., Saratov, 410012, Russian Federation
Gaik A Baregamyan
N. G. Chernyshevsky Saratov State University (National Research University)
Email: baregaik@gmail.com
Postgraduate Student; Dept. of Mathematical Theory of Elasticity and Biomechanics 83, Astrakhanskaya st., Saratov, 410012, Russian Federation
Leonid Yu Kossovich
N. G. Chernyshevsky Saratov State University (National Research University)
Email: president@sgu.ru
Dr. Phys. & Math. Sci., Professor; Head of Department; Dept. of Mathematical Theory of Elasticity and Biomechanics 83, Astrakhanskaya st., Saratov, 410012, Russian Federation
References
- Wei J., Wei C., Su L., Fu J., Lv J. Synergistic Reinforcement of Phenol-Formaldehyde Resin Composites by Poly(Hexanedithiol)/Graphene Oxide // J. Mater. Sci. Chem. Eng., 2015. vol. 3, no. 8. pp. 56-70. doi: 10.4236/msce.2015.38009.
- Potts J. R., Dreyer D. R., Bielawski C. W., Ruoff R. S. Graphene-based polymer nanocomposites // Polymer, 2011. vol. 52, no. 1. pp. 5-25. doi: 10.1016/j.polymer.2010.11.042.
- Jung N., Kwon S., Lee D., Yoon D. M. et. al. Synthesis of Chemically Bonded Graphene/ Carbon Nanotube Composites and their Application in Large Volumetric Capacitance Supercapacitors // Adv. Mater., 2013. vol. 25, no. 47. pp. 6854-6858. doi: 10.1002/adma.201302788.
- Kim S. H., Song W., Jung M. W., Kang M. A. et. al. Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors // Adv. Mater., 2014. vol. 26, no. 25. pp. 4247-4252. doi: 10.1002/adma.201400463.
- Kholmanov I. N., Magnuson C. W. , Piner R., Kim J. Y. et. al. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films // Adv. Mater., 2015. vol. 27, no. 19. pp. 3053-3059. doi: 10.1002/adma.201500785.
- Dong X., Li B., Wei A., Cao X. et. al. One-step growth of graphene-carbon nanotube hybrid materials by chemical vapor deposition // Carbon, 2011. vol. 49, no. 9. pp. 2944-2949. doi: 10.1016/j.carbon.2011.03.009.
- Tristán-López F., Morelos-Gómez A., Vega-Diaz S. M., Garcia-Betancourt M. L. et. al. Large area films of alternating graphene-carbon nanotube layers processed in water // ACS Nano, 2013. vol. 7, no. 12. pp. 10788-10798. doi: 10.1021/nn404022m.
- Mitrofanov V. V., Slepchenkov M. M., Zhang G., Glukhova O. E. Hybrid Carbon Nanotube-Graphene Monolayer Films: Regularities of Structure, Electronic and Optical Properties // Carbon, 2017. vol. 115. pp. 803-810. doi: 10.1016/j.carbon.2017.01.040.
- Yu W. J., Chae S. H., Lee S. Y., Duong D. L., Lee Y. H. Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode // Adv. Mater., 2011. vol. 23, no. 16. pp. 1889-1893. doi: 10.1002/adma.201004444.
- Zhu Y., Li L., Zhang C., Casillas G. et. al. A seamless three-dimensional carbon nanotube graphene hybrid material // Nat. Commun., 2012. vol. 3, 1225. doi: 10.1038/ncomms2234.
- Kakade B. A., Pillai V. K., Late D. J., Chavan P. G. et. al. High current density, low threshold field emission from functionalized carbon nanotube bucky paper // Appl. Phys. Lett., 2010. vol. 97, no. 7, 073102. doi: 10.1063/1.3479049.
- Jousseaume V., Cuzzocrea J., Bernier N., Renard V. T. Few Graphene layer/CarbonNanotube composite Grown at CMOS-compatible Temperature // Appl. Phys. Lett., 2011. vol. 98, 123103. doi: 10.1063/1.3569142.
- Brenner D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films // Phys. Rev. B, 1990. vol. 42. pp. 9458-9471. doi: 10.1103/PhysRevB.42.9458.
- Glukhova O. E., Kolesnikova A. S., Kossovich E. L., Zhnichkov R. Y. Super strong nanoindentors for biomedical applications based on bamboo-like nanotubes // Proc. SPIE, 2012. vol. 8233, Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications IV (2 February 2012), 823311. doi: 10.1117/12.907035.
- Kolesnikova A. S. Mechanical properties of sorbents depending on nanopore sizes // Phys. Sol. State, 2017. vol. 59, no. 7. pp. 1336-1339. doi: 10.1134/S1063783417070113.
- Glukhova O. E., Kolesnikova A. S. Mechanical and emission properties of thinnest stable bamboolike nanotubes // J. Phys. Conf. Ser., 2012. vol. 393, 012027. doi: 10.1088/1742-6596/393/1/012027.
- Lucas A. A., Lambin P. H., Smalley R. E. On the energetics of tubular fullerenes // J. Phys. Chem. Solids, 1993. vol. 54, no. 5. pp. 587-593. doi: 10.1016/0022-3697(93)90237-L.
- Glukhova O. E., Kolesnikova A. S., Slepchenkov M. M., Shmygin D. S. Atomic structure of energetically stable carbon nanotubes/graphene composites // Phys. Sol. State, 2015. vol. 57, no. 5. pp. 1009-1013. doi: 10.1134/S106378341505011X.
- Glukhova O. E., Slepchenkov M. M., Shmygin D. S. Nanoindentation of a new graphene/phospholipid composite: a numerical simulation // Proc. SPIE, 2017. vol. 10079, Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications IX (21 February 2017), 1007910. doi: 10.1117/12.2256809.
- Глухова О. Е., Гришина О. А., Савостьянов Г. В. Наноиндентирование липопротеинов высокой плотности углеродными нанотрубками: мультимасштабное моделирование // Российский журнал биомеханики, 2014. Т. 18, № 3. С. 367-380.
- Глухова О. Е., Шунаев В. В. Исследование прочности на разрыв моно- и бислойного графена // Нано- и микросистемная техника, 2012. № 7(144). С. 25-29.
