Построение полнопараметрических аналитических решений в основной смешанной задаче эластостатики односвязного тела



Цитировать

Полный текст

Аннотация

Использование аналитических решений для анализа состояния тел при исследовательских и инженерных расчетах обеспечивает вычислительное ресурсосбережение. Цель работы - обеспечение методологии построения полнопараметрических решений задач математической физики, в том числе основной смешанной задачи эластостатики. Средством является относительно новый энергетический метод граничных состояний, опирающийся на компьютерные алгебры, который исходит из понятия состояния среды, изоморфизма гильбертовых пространств внутренних и граничных состояний тела и является самодостаточным в том смысле, что принципиально не требует сопоставления решения тестовых задач с таковыми, построенными иными методами. Для включения в решение в явном виде констант среды в работе рекомендуется экономящий вычислительные ресурсы метод граничных состояний с возмущениями, в котором прямой метод «обвязывается» подходом А. Пуанкаре. Для явного включения в решение параметров граничных условий предложена технология эталонных решений. Ее эффективность продемонстрирована на конкретном примере основной смешанной задачи эластостатики. В качестве объекта исследования назначено односвязное ограниченное тело, граница которого разбита на три участка. На каждом участке удерживается индивидуальный способ параметризации точек границы: полярная, цилиндрическая, сферическая системы координат. Расчеты выполняются с применением компьютерной алгебры вычислительной системы Mathematica. Продемонстрирована эффективность разработанной методологии для достижения поставленной цели. Описана последовательность шагов метода, ведущая к гарантированному достижению цели. Выполнено решение конкретной задачи. Результаты представлены в явной аналитической форме, содержащей все параметры краевой задачи теории упругости, и проиллюстрированы графически после расчета по аналитическому решению при конкретном наборе значений параметров.

Полный текст

Введение. Факт наличия аналитического решения краевых задач уравнений математической физики переоценить трудно. Простой расчет по готовым формулам позволяет проводить любой анализ решения и отвечать даже на самые замысловатые вопросы вплоть до решения задач параметрической оптимизации объекта с вполне конкретными целевыми назначениями при соблюдении любых ограничений на характеристики объекта. Конечно, широкое применение современных вычислительных технологий, основанных на «числе», позволяет во многих случаях справиться и с такой проблемой, но при этом приходится вести глобальный пересчет практически на всех этапах построения численного решения, а не просто расчет по формулам единожды построенного аналитического решения. Эта альтернатива делает актуальной тему работы - построение полнопараметрического решения (ППР). К настоящему моменту времени этапы в построении ППР (обезразмеривание, учет варьируемости физических параметров среды с последующим интерполированием [1], построение ППР первой и второй основных задач теории упругости (ТУ) при учете множественных символьных параметров в граничных условиях (ГУ) и в выражениях для объемных сил) уже пройдены. На очереди стоят задачи со смешанными ГУ опять же при наличии множественности варьируемых параметров в выражениях как для поверхностных усилий, так и для перемещений. Кроме этого, представляется более эффективной методология использования метода возмущений, «обвязывающего» метод граничных состояний (МГСВ), для вычислительного ресурсосбережения. Цель работы состоит в построении ППР основной смешанной задачи ТУ при конечном наборе варьируемых параметров ГУ и учет в аналитическом по форме решении физических параметров среды средствами МГСВ. Задачи, соответствующие поставленной цели: 1) формулировка и построение эталонных решений основной смешанной задачи ТУ по классификации Н. И. Мусхелишвили [2]. В эталонном решении участвует лишь состояние среды, соответствующее ровно одному варьируемому параметру ГУ. Линейная комбинация эталонных решений с коэффициентами - символами включает таковые в ППР; 2) каждое эталонное решение должно в явном виде содержать символ
×

Об авторах

Виктор Борисович Пеньков

Липецкий государственный технический университет

Email: vbpenkov@mail.ru
доктор физико-математических наук; профессор; каф. общей механики Россия, 398055, Липецк, ул. Московская, 30

Ольга Сергеевна Новикова

Липецкий государственный технический университет

Email: _o_l_g_a_@bk.ru
аспирант; каф. общей механики Россия, 398055, Липецк, ул. Московская, 30

Любовь Владимировна Левина

Липецкий государственный технический университет

Email: satalkina_lyubov@mail.ru
кандидат физико-математических наук; доцент; каф. прикладной математики Россия, 398055, Липецк, ул. Московская, 30

Список литературы

  1. Новикова О. С. Методология построения полнопараметрических аналитических решений основных смешанных задач эластостатики для обеспечения этапов технологических процессов обработки давлением / Проблемы и перспективы развития машиностроения: Сб. науч. трудов междунар. науч.-техн. конф., посвящ. 60-летию Липецкого государственного технического университета. Т. 2. Липецк, 2016. С. 203-208.
  2. Мусхелишвили Н. И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966. 708 с.
  3. Лурье А. И. Теория упругости. М.: Наука, 1970. 940 с.
  4. Работнов Ю. Н. Механика деформируемого твердого тела. М.: Наука, 1979. 744 с.
  5. Седов Л. И. Методы подобия и размерности в механике. М.: Наука, 1972. 440 с.
  6. Neuber H. Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie. Der Hohlkegel unter Einzellast als Beispiel // ZAMM, 1934. vol. 14, no. 4. pp. 203-212. doi: 10.1002/zamm.19340140404.
  7. Penkov V. B., Satalkina L. V., Shulmin A. S. The use of the method of boundary states to analyse an elastic medium with cavities and inclusions // J. Appl. Math. Mech., 2014. vol. 78, no. 4. pp. 384-394. doi: 10.1016/j.jappmathmech.2014.12.010.
  8. Nayfeh A. H. Introduction to perturbation techniques. New York: A wiley-interscience publication. John Wiley & Sons, Inc., 1993. xiv+519 pp.
  9. Минаева Н. В. Метод возмущений в механике деформируемых тел. М.: Научная книга, 2002. 156 с.
  10. Schwarz H. A. Über einige Abbildungsaufgaben // Journal für die reine und angewandte Mathematik. vol. 1869, no. 70. pp. 105-120. doi: 10.1515/crll.1869.70.105.
  11. Стружанов В. В. Об одном итерационном методе расчета напряжений в неодносвязных телах // Вычислительные технологии, 2006. Т. 11, № 6. С. 118-124.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах